Browse > Article
http://dx.doi.org/10.5713/ajas.2009.80352

Effects of Feed Particle Size and Feed Form on Growth Performance, Nutrient Metabolizability and Intestinal Morphology in Broiler Chickens  

Zang, J.J. (National Key Lab of Animal Nutrition, China Agricultural University)
Piao, X.S. (National Key Lab of Animal Nutrition, China Agricultural University)
Huang, D.S. (National Key Lab of Animal Nutrition, China Agricultural University)
Wang, J.J. (National Key Lab of Animal Nutrition, China Agricultural University)
Ma, X. (National Key Lab of Animal Nutrition, China Agricultural University)
Ma, Yongxi (National Key Lab of Animal Nutrition, China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.22, no.1, 2009 , pp. 107-112 More about this Journal
Abstract
This study was conducted to investigate the effect of feed particle size and feed form on growth performance, nutrient metabolizability and intestinal morphology in broiler chickens. This experiment was a 2${\times}$2 factorial arrangement including two feed particle sizes (fine and coarse) and two feed forms (mash and pellet). A total of two hundred and eighty eight day-old male Arbor Acre broilers were used in this six week experiment. Birds were randomly allotted to four dietary treatments with six replicates per treatment and twelve birds per replicate. The results showed that pelleting diets resulted in greater ADG (p<0.01), greater ADFI (p<0.01) and lower feed to gain ratio (F/G) (p<0.05) during starter, grower and overall period. Also, pelleting improved both apparent metabolizable energy (AME) (p<0.01) and the apparent metabolizability of crude protein (p<0.05) and organic matter (p<0.05) regardless of the phase. Reduction of feed particle size enhanced AME (p<0.05) during d 19 to 21. Increased villus height (p<0.05) and crypt depth ratio (p< 0.05) within duodenum, jejunum, and ileum were observed in birds fed the pellet diet compared with those given the mash diet. In conclusion, results indicated that feed pellets might enhance performance by improving nutrient metabolizability and digestive tract development.
Keywords
Feed Particle Size; Feed Form; Nutrient Metabolizability; Intestinal Morphology;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 American Dairy Science Association. 1970. A report: Committee on classification of particle size in feedstuffs. J. Dairy Sci. 53:689-690   DOI
2 Lott, B. D., E. J. Day, J. W. Deaton and J. D. May. 1992. The effect of temperature, dietary energy level and corn particle size on broiler performance. Poult. Sci. 71:618-624   DOI   PUBMED
3 Parsons, A. S., N. P. Buchanan, K. P. Blemings, M. E. Wilson and J. S. Mortiz. 2006. Effect of corn particle size and pellet texture on broiler performance in the growing phase. J. Appl. Poult. Res. 15:245-255
4 Touchette, K. J., J. A. Carroll, G. L. Allee, R. L. Matteri, C. J. Dyer, L. A. Bwausang and M. E. Zannelli. 2002. Effect of spraydried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J. Anim. Sci. 80:494-501   PUBMED
5 Zelenka, J. 2003. Effect of pelleting on digestibility and metabolisable energy values of poultry diet. Czech. J. Anim. Sci. 48:239-242
6 Amerah, A. M., V. Ravindran, R. G. Lentle and D. G. Thomas. 2007a. Feed particle size: implications on the digestion and performance of poultry. World's Poult. Sci. J. 63:439-455
7 Peron, A., D. Bastianelli, F. X. Oury, J. Gomez and B. Carre. 2005. Effects of food depriveation and particle size of ground wheat on digestibility of food components in broilers fed on a pelleted diet. Br. Poult. Sci. 46:223-230   DOI   ScienceOn
8 Nir, I. and R. Hillel. 1995. Effect of particle size on performance. 3. Grinding pelleting interactions. Poult. Sci. 74:771-783   DOI   PUBMED   ScienceOn
9 Jensen, A. H. and D. E. Becker. 1965. Effect of pelleting diets and dietary components on the performance of young pigs. J. Anim. Sci. 24:392-397   DOI   PUBMED   ScienceOn
10 SAS Institute. 1996. SAS User's Guide: Statistics. Version 7.0, SAS Institute, Cary, NC
11 National Research Council. 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy Press, Washington, DC
12 AOAC. 1995. Official methods of analysis. 16th Ed. Association of Official Analytical Chemists. Washington, DC
13 Cera, K. R., D. C. Mahan and R. F. Cross. 1988. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. J. Anim. Sci. 66:574-584   PUBMED
14 Kilburn, J. and H. M. Edwards Jr. 2001. The response of broilers to the feeding of mash or pelleted diets containing maize of varying particle size. Br. Poult. Sci. 42:484-492   DOI   ScienceOn
15 Amerah, A. M., V. Ravindran, R. G. Lentle and D. G. Thomas. 2007b. Influence of feed particle size and feed form on the performance, energy utilization, digestive tract development, and digesta parameters of broiler starters. Poult. Sci. 86:2615-2623   DOI   ScienceOn
16 Moran, E. T., Jr. 1989. Effect of pellet quality on the performance of meat birds. In: Recent advances in animal nutrition (Ed. W. Haresign and D. J. A. Cole). Buttersworth, London. pp. 87-108
17 Calet, C. 1965. The relative value of pellets versus mash and grain in poultry nutrition. World's Poult. Sci. J. 21:23-52   DOI
18 Engberg, R. M., M. S. Hedemann and B. B. Jensen. 2002. The influence of grinding and pelleting of feed on the microbial compostion and activity in the digestive tract of broiler chickens. Br. Poult. Sci. 44:569-579   DOI   ScienceOn
19 American Society of Agricultural Engineers (ASAE). 1997. ASAE S269.4, Cubes, pellets and crumbles-Definitions and methods for determining density, durability and moisture. Standards 1997. Am. Soc. Agri. Eng., St. Joseph, MI
20 Jensen, L. S. 2000. Influence of pelleting on the nutritional needs of poultry. Asian-Aust. J. Anim. Sci. 13:35-46
21 Goodband, R. D., M. D. Tokach and J. L. Nellssen. 2002. The effects of diet particle size on animal performance, MF-2050 Feed Manufacturing. Dept. Grain Sci. Ind., Kansas State Univ., Manhattan
22 Douslas, J. H., T. W. Sullivan, P. L. Bond, F. J. Struwe, J. G. Baier. and L. G. Robeson. 1990. Influence of grinding, rolling, and pelleting on the nutritional-value of grain sorghums and yellow corn for broilers. Poult. Sci. 69:2150-2156   DOI
23 Morel, P. C. and Y. H. Cottam. 2007. Effects of particle size of barley on intestinal morphology, growth performance and nutrient digestibility in pigs. Asian-Aust. J. Anim. Sci. 20:1738-1745
24 Reece, F. N., B. D. Lott and J. W. Deaton. 1985. The effects of feed form, grinding method, energy level and gender on broiler performance in a moderate (21°C) environment. Poult. Sci. 64:1834-1839   DOI   ScienceOn
25 Svihus, B., K. H. Kl$\phi$vstad, V. Perez, O. Zimonja, S. Sahlstrom, R. B. Schüller, W. K. Jeksrud and E. Prestl$\phi$ kken. 2004. Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarseness by the use of roller mill and hammer mill. Anim. Feed Sci. Technol. 117:281-293   DOI   ScienceOn