• 제목/요약/키워드: Feed Forward Capacitor

검색결과 14건 처리시간 0.021초

Research on the Mechanism of Neutral-point Voltage Fluctuation and Capacitor Voltage Balancing Control Strategy of Three-phase Three-level T-type Inverter

  • Yan, Gangui;Duan, Shuangming;Zhao, Shujian;Li, Gen;Wu, Wei;Li, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2227-2236
    • /
    • 2017
  • In order to solve the neutral-point voltage fluctuation problem of three-phase three-level T-type inverters (TPTLTIs), the unbalance characteristics of capacitor voltages under different switching states and the mechanism of neutral-point voltage fluctuation are revealed. Based on the mathematical model of a TPTLTI, a feed-forward voltage balancing control strategy of DC-link capacitor voltages error is proposed. The strategy generates a DC bias voltage using a capacitor voltage loop with a proportional integral (PI) controller. The proposed strategy can suppress the neutral-point voltage fluctuation effectively and improve the quality of output currents. The correctness of the theoretical analysis is verified through simulations. An experimental prototype of a TPTLTI based on Digital Signal Processor (DSP) is built. The feasibility and effectiveness of the proposed strategy is verified through experiment. The results from simulations and experiment match very well.

A Discrete State-Space Control Scheme for Dynamic Voltage Restorers

  • Lei, He;Lin, Xin-Chun;Xue, Ming-Yu;Kang, Yong
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.400-408
    • /
    • 2013
  • This paper presents a discrete state-space controller using state feedback control and feed-forward decoupling to provide a desirable control bandwidth and control stability for dynamic voltage restorers (DVR). The paper initially discusses three typical applications of a DVR. The load-side capacitor DVR topology is preferred because of its better filtering capability. The proposed DVR controller offers almost full controllability because of the multi-feedback of state variables, including one-beat delay feedback. Feed-forward decoupling is usually employed to prevent disturbances of the load current and source voltage. Directly obtaining the feed-forward paths of the load current and source voltage in the discrete domain is a complicated process. Fortunately, the full feed-forward decoupling strategy can be easily applied to the discrete state-space controller by means of continuous transformation. Simulation and experimental results from a digital signal processor-based system are included to support theoretical analysis.

Co-design of the LCL Filter and Control for Grid-Connected Inverters

  • Zhang, Yu;Xue, Mingyu;Li, Minying;Kang, Yong;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.1047-1056
    • /
    • 2014
  • In most grid-connected inverters (GCI) with an LCL filter, since the design of both the LCL filter and the controller is done separately, considerable tuning efforts have to be exerted when compared to inverters using an L filter. Consequently, an integrated co-design of the filter and the controller for an LCL-type GCI is proposed in this paper. The control strategy includes only a PI current controller and a proportional grid voltage feed-forward controller. The capacitor is removed from the LCL filer and the design procedure starts from an L-type GCI with a PI current controller. After the PI controller has been settled, the capacitor is added back to the filter. Hence, it introduces a resonance frequency, which is identified based on the crossover frequencies to accommodate the preset PI controller. Using the proposed co-design method, harmonic standards are satisfied and other practical constraints are met. Furthermore, the grid voltage feed-forward control can bring an inherent damping characteristic. In such a way, the good control performance offered by the original L-type GCI and the sharp harmonic attenuation offered by the latter designed LCL filter can be well integrated. Moreover, only the grid current and grid voltage are sensed. Simulation and experimental results verify the feasibility of the proposed design methodology.

A 2.5 V 109 dB DR ΔΣ ADC for Audio Application

  • Noh, Gwang-Yol;Ahn, Gil-Cho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.276-281
    • /
    • 2010
  • A 2.5 V feed-forward second-order deltasigma modulator for audio application is presented. A 9-level quantizer with a tree-structured dynamic element matching (DEM) was employed to improve the linearity by shaping the distortion resulted from the capacitor mismatch of the feedback digital-toanalog converter (DAC). A chopper stabilization technique (CHS) is used to reduce the flicker noise in the first integrator. The prototype delta-sigma analogto-digital converter (ADC) implemented in a 65 nm 1P8M CMOS process occupies 0.747 $mm^2$ and achieves 109.1 dB dynamic range (DR), 85.4 dB signal-to-noise ratio (SNR) in a 24 kHz audio signal bandwidth, while consuming 14.75 mW from a 2.5 V supply.

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

저전력 동작을 위한 지연된 피드-포워드 경로를 갖는 3차 시그마-델타 변조기 (Third order Sigma-Delta Modulator with Delayed Feed-forward Path for Low-power Operation)

  • 이민웅;이종열
    • 전자공학회논문지
    • /
    • 제51권10호
    • /
    • pp.57-63
    • /
    • 2014
  • 본 논문은 전력소모와 면적을 줄인 지연된 피드-포워드 경로를 갖는 3차 SDM 구조를 제안하였다. 제안한 SDM은 기존의 적분기 2개로 구현된 3차 SDM(Sigma-Delta Modulator) 구조를 개선하였다. 제안된 구조에서는 기존 구조의 둘째 단에 지연된 피드-포워드 경로를 삽입함으로써 첫째 단의 계수 값을 2배로 증가시킬 수 있어 기존구조에 비하여 첫째 단 적분기 커패시터($C_I$)를 1/2로 감소시킬 수 있다. 그러므로 첫째 단 적분기의 부하 커패시턴스가 1/2로 작아지기 때문에 첫째 단 연산증폭기의 출력전류는 51%, 첫째 단의 커패시터 면적은 48% 감소되어 제안한 구조는 전력과 면적을 최적화 할 수 있다. 본 논문에서 제안한 구조를 이용하여 설계된 3차 SC SDM은 $0.18{\mu}m$ CMOS 공정에서 공급전압 1.8V, 입력신호 1Vpp/1KHz, 신호대역폭 24KHz, 샘플링 주파수 2.8224MHz 조건으로 시뮬레이션 하였다. 그 결과 SNR(Signal to Noise Ratio) 88.9dB, ENOB(Effective Number of Bits) 14비트이고 SDM의 전체 전력소모는 $180{\mu}W$이다.

높은 PSRR을 갖는 Low-Dropout(LDO) 레귤레이터 (High PSRR Low-Dropout(LDO) Regulator)

  • 김인혜;노정진
    • 전기전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.318-321
    • /
    • 2016
  • IoT 산업이 빠르게 성장하면서 전원 관리 집적회로의 중요성이 부각되고 있다. 본 논문에서는 리플 Subtractor, 피드 포워드 커패시터, OTA를 이용한 LDO 구조를 제안한다. 이를 통해 10MHz가 넘는 고주파 영역에서도 -40dB 이상 높은 전원 전압 제거비(PSRR)를 얻었다. 설계된 Low-Dropout(LDO) 레귤레이터는 $0.18{\mu}m$ CMOS 공정에서 설계되었으며 시뮬레이션 결과 PSRR은 부하 전류 40mA, 500kHz에서 -73.4dB다. 최대 구동 가능 전류는 40mA이다.

A 1.2-V 0.18-${\mu}m$ Sigma-Delta A/D Converter for 3G wireless Applications

  • Kim, Hyun-Joong;Jung, Tae-Sung;Yoo, Chang-sik
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.627-628
    • /
    • 2006
  • A low-voltage switched-capacitor $2^{nd}$-order $\Sigma\Delta$ modulator using full feed-forward is introduced. It has two advantages: the unity signal transfer function and reduced signal swings inside the $\Sigma\Delta$ loop. These features greatly relax the DC gain and output swing requirements for Op-Amp in the low-voltage $\Sigma\Delta$ modulator. Implemented by a 0.18-${\mu}m$ CMOS technology, the $\Sigma\Delta$ modulator satisfies performance requirements for WCDMA and CDMA2000 standards.

  • PDF

Fast Transient Buck Converter Using a Hysteresis PWM Controller

  • Liu, Yong-Xiao;Zhao, Jin-Bin;Qu, Ke-Qing
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.991-999
    • /
    • 2013
  • In this paper, a fast transient buck converter using hysteresis PWM control is presented. The proposed control method is based on hysteresis control of the capacitor C voltage. This offers a faster transient response to meet the challenges of the power supply requirements for fast dynamic input and load changes. It also provides better stability and solves the compensation problem of the error amplifier in conversional voltage PWM control. Finally, the steady-state and dynamic operation of the proposed control method are analyzed and verified by simulation and experimental results.

출력 캐패시터 전압을 이용한 출력 전류 센서리스 출력 전류 피드 포워드 (Output Current Feed-Forward using Output Capacitor Voltage without Output Current Sensor)

  • 최규식;김혜진;조보형
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.193-194
    • /
    • 2012
  • 동일한 패시브 소자를 사용한 조건에서 부하 변동에 대한 출력 전압 레귤레이션을 향상시키기 위해서 출력 전류의 피드포워드 기법이 많이 이용되고 있다. 그러나 이러한 방법은 출력 전류를 센싱하기 위해 직렬 저항 사용이나 홀센서와 같은 전류 센서를 사용하게 되는데 이는 각각 저항 손실 증가와 가격 증가로 이어지게 되는 단점이 있다. 이에 이러한 출력 전류 센서 없이 출력 캐패시터의 전압을 이용하여 출력 전류를 간접적으로 센싱하여 출력 전류 피드포워드를 하는 기법을 제안하고 이를 시뮬레이션을 통해 검증한다.

  • PDF