• Title/Summary/Keyword: Fecal noxious gas

Search Result 43, Processing Time 0.023 seconds

Effect of Lactobacillus acidophilus based probiotic product supplementation on the blood profile, fecal noxious gas emission, and fecal shedding of lactic acid bacteria and coliform bacteria in healthy adult Beagle dogs

  • Sun, Hao Yang;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.437-443
    • /
    • 2020
  • The aim of this study was to evaluate the effect of Lactobacillus acidophilus probiotic (LAP) product supplementation on the blood profile, fecal noxious gas emission, and fecal shedding of lactic acid bacteria and coliform bacteria in healthy adult Beagle dogs. In total, 14 Beagle dogs with an average initial body weight of 10.19 ± 0.61 kg were randomly assigned into two dietary treatments,with and without LAP supplementation, for a 28-day feeding trial. At the end of the experiment, there was no significant (p > 0.05) difference in the concentration of serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), white blood cell (WBC), red blood cell (RBC), blood lymphocyte percentage, fecal hydrogen sulfide (H2S) and total mercaptans (R.SH) emission, and fecal coliforms counts. However, the serum concentrations of the triglyceride and fecal ammonia (NH3) emission of the LAP treatment were significantly (p < 0.05) decreased in the group compared with the CON dogs. Fecal total lactic acid bacteria counts were significantly (p < 0.05) increased in the LAP treatment. In conclusion, the supplementation of LAP in Beagle dog diets could decrease the blood triglyceride level and enhance the gut Lactobacillus count which may have positive effects on dogs.

Effects of dehulled lupin kernel (DLK) supplementation on growth performance, nutrient digestibility, blood urea nitrogen (BUN) and creatinine, fecal microbiota and fecal noxious gas emission in growing pigs

  • Madesh, Muniyappan;Hyung Suk, Hwang;In Ho, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.531-537
    • /
    • 2022
  • This study evaluated the effects of dehulled lupin kernel (DLK) supplementation on growth performance, nutrient digestibility, blood urea nitrogen (BUN) and creatinine, fecal microbiota and fecal noxious gas emission in growing pigs. A total of 108 growing pigs (Landrace × Yorkshire × Duroc) with an average initial body weight (IBW) of 24.49 ± 3.2 kg were allocated to one of three dietary treatments (5, 10, and 20 % DLK) according to sex and BW in a randomized complete block design for 6 wk. Each dietary treatment consisted of 9 replication pens with 4 pigs per pen (2 gilts and 2 borrows). The results show that there were no significant differences in growth performance and nutrient digestibility among the treatments (p > 0.05). However, pigs fed the DLK20 diet had a higher BUN compared with those fed the DLK10 diet (p < 0.05). No effects were observed on the fecal microbiota and fecal noxious gas emission among the treatments. In conclusion, the inclusion of 20% DLK had no adverse effects on the performance in growing pigs.

Effects of multi-enzyme supplementation in a corn and soybean meal-based diet on growth performance, apparent digestibility, blood characteristics, fecal microbes and noxious gas emission in growing pigs

  • Yin, Jia;Kim, In-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The objective of this study was to determine the effect of multi-enzyme supplementation in a corn and soybean meal-based diet on the growth performance, apparent nutrient digestibility, blood profile, fecal microbes and noxious gas emission in growing pigs. A total of 80 crossbred [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] growing pigs with an average body weight (BW) of $25.04{\pm}1.44kg$ were used in a 6-week experiment. The experimental treatments were as follows: CON, basal diet and; T1, basal diet + 100 mg/kg multi-enzyme. During the experiment, the pigs fed the diet with multi-enzyme supplementation had a higher gain to feed ratio (G/F) (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. On day 42, the pigs fed the diet with multi-enzyme supplementation had decreased $H_2S$ and $NH_3$ emissions (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. However, no effect was observed on nutrient digestibility, blood profiles and fecal microbes among the treatments (p > 0.05). In conclusion, it is suggested that multi-enzyme supplementation in a corn and soybean meal based diet can partly improve the growth performance and noxious gas emission of growing pigs.

Effects of Dietary Bacillus-based Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Finishing Pigs

  • Chen, Y.J.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Son, K.S.;Kim, H.J.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.587-592
    • /
    • 2006
  • This study was conducted to evaluate the effects of supplementation with bacillus-based probiotic (Bacillus subtilis, $1.0{\times}10^7CFU/g$; Bacillus coagulans, $2.0{\times}10^6CFU/g$ and Lactobacillus acidophilus, $5.0{\times}10^6CFU/g$) on finishing pigs growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content and to determine the optimal addition level of this probiotic preparation. A total of forty eight pigs with an initial body weight (BW) of $90.60{\pm}2.94kg$ were allotted to three dietary treatments (four pigs per pen with four pens per treatment) according to a randomized complete block design. Dietary treatment included: 1) CON (basal diet); 2) BP1 (basal diet+bacillus-based probiotic 0.1%) and 3) BP2 (basal diet+bacillus-based probiotic 0.2%). The experiment lasted 6 weeks. Through the entire experimental period, ADG was improved by 11% (p<0.05) in pigs fed diets supplemented with 0.2% bacillus-based probiotic compared to pigs fed the basal diet. ADFI and gain/feed were not affected by the treatments (p>0.05). Supplementation of bacillus-based probiotic did not affect either DM and N digestibilities or blood characteristics (p>0.05) of pigs. Fecal ammonia nitrogen ($NH_3$-N) measured at the end of experiment was reduced (p<0.05) when pigs were fed the diet with 0.2% bacillus-based probiotic. Fecal butyric acid concentration also decreased significantly (p<0.05) whereas acetic acid and propionic acid concentrations were not affected (p>0.05) when pigs were fed diets with added bacillus-based probiotic. In conclusion, dietary supplementation of bacillus-based probiotic can increase growth performance and decrease fecal noxious gas content concentration.

Effect of Fermented Chlorella Supplementation on Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial and Fecal Noxious Gas Content in Growing Pigs

  • Yan, L.;Lim, S.U.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1742-1747
    • /
    • 2012
  • A total of 96 growing pigs ((Landrace${\times}$Yorkshire)${\times}$Duroc; BW = $26.58{\pm}1.41$ kg) were used in a 6-wk feeding trail to evaluate the effects of fermented chlorella (FC) supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Pigs were randomly allotted into 1 of 4 dietary treatments with 6 replicate pens (2 barrows and 2 gilts) per treatment. Dietary treatments were: i) negative control (NC), basal diet (without antibiotics); ii) positive control (PC), NC+0.05% tylosin; iii) (fermented chlorella 01) FC01, NC+0.1% FC, and iv) fermented chlorella 02 (FC02), NC+0.2% FC. In this study, feeding pigs PC or FC01 diets led to a higher average daily gain (ADG) and dry matter (DM) digestibility than those fed NC diet (p<0.05), whereas the inclusion of FC02 diet did not affect the ADG and DM compared with the NC group. No difference (p>0.05) was observed on the body weight, average daily feed intake (ADFI), gain:feed (G:F) ratio, the apparent total tract digestibility of N and energy throughout the experiment. The inclusion of PC or FC did not affect the blood characteristics (p>0.05). Moreover, dietary FC treatment led to a higher (p<0.05) lactobacillus concentration and lower E. coli concentration than the NC treatment, whereas the antibiotic supplementation only decreased the E. coli concentration. Pigs fed FC or PC diet had reduced (p<0.05) fecal $NH_3$ and $H_2S$ content compared with those fed NC diet. In conclusion, our results indicated that the inclusion of FC01 treatment could improve the growth performance, nutrient digestibility, fecal microbial shedding (lower E. coli and higher lactobacillus), and decrease the fecal noxious gas emission in growing pigs when compared with the group fed the basal diet. In conclusion, dietary FC could be considered as a good source of supplementation in growing pigs because of its growth promoting effect.

Effects of Dietary Probiotic on Growth Performance, Nutrients Digestibility, Blood Characteristics and Fecal Noxious Gas Content in Growing Pigs

  • Chen, Y.J.;Son, K.S.;Min, B.J.;Cho, J.H.;Kwon, O.S.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1464-1468
    • /
    • 2005
  • The aim of this study was to assess the effects of dietary complex probiotic (Lactobacillus acidophilus, $1.0{\times}10^7$ CFU/g; Saccharomyces cerevisae, $4.3{\times}10^6$ CFU/g; Bacillus subtilis $2.0{\times}10^6$ CFU/g) on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Ninety [(Duroc${\times}$Yorkshire)${\times}$Landrace] pigs with the average initial BW of 39.75${\pm}$1.97 kg were allocated into three treatments by a randomized complete block design. There were five pens per treatment with six pigs per pen. Dietary treatments include: 1) CON (basal diet); 2) CP1 (basal diet+complex probiotic 0.1%) and 3) CP2 (basal diet+complex probiotic 0.2%). During the entire experimental period of 6 weeks, results showed that addition of complex probiotic at the level of 0.2% to diet increased ADG significantly (p<0.05). Also, digestibilities of DM and N tended to increase, however, no significant differences were observed (p>0.05). Blood characteristics (IgG, Albumin, total protein, RBC, WBC and lymphocyte) of pigs were not affected (p>0.05) by complex probiotic supplementation. Fecal $NH_3$-N was decreased (11.8%) significantly by the addition of complex probiotic (p<0.05), but no effects were observed on fecal acetic acid, propionic acid and butyric acid concentrations (p>0.05). In conclusion, results in this experiment indicated that dietary complex probiotic supplementation had a positive effect on growing pigs performance and could decrease fecal $NH_3$-N concentration.

Effect of dietary Achyranthes japonica extract on growth performance of growing pigs and absorption rate of quercetin in blood

  • Md Mortuza Hossain;Hyung Suk Hwang;Minyeong Pang;Min-Koo Choi;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study was done to investigate the effects of the incorporation of Achyranthes japonica extracts (AJE) in diet on the production parameters of growing pigs. Exp 1: Total, 105 crossbred pigs (average body weight: 24.47 ± 2.46 kg) were used in a 6-week feeding trial. Pigs (seven replicates, five pigs per pen) were allotted randomly to three treatments. Dietary treatments: CON (basal diet); basal diet with 0.025% AJE, and basal diet + 0.050% AJE). Growth performance, nutrient digestibility, fecal microbial count, and fecal noxious gas were assessed in this study. Average daily gain (ADG), average daily feed intake (ADFI), and gain to feed ratio (G:F) were not affected by the addition of up to 0.05% AJE. In the case of apparent total tract digestibility (ATTD), dry matter (DM), nitrogen (N), and digestible energy (DE) were not changed in 3rd and 6th weeks of the feeding trial through the addition of AJE up to 0.05% in the growing pig diet. In microbial count, Lactobacillus and Escherichia coli count at 3rd and 6th week was similar in all the treatment diets. The inclusion of AJE at levels up to 0.05% in growing pig diet had no effect on the production of NH3, H2S, acetic acid, and CO2 in the feces. After ending the Exp 1, a total of nine pigs were divided into three treatment groups. Treatment diets were included, TRT1, basal diet + powder quercetin 30 g; TRT2, basal diet + powder quercetin 150 g; TRT3, basal diet + powder quercetin 300g. Rate of absorption in blood was increased with the higher dose of quercetin. The results suggested incorporation of AJE up to 0.05% has no significant effect on ADG, ADFI, and G:F, as well as DM, N, and DE digestibility, fecal microbial count, and fecal noxious gas emission in growing pigs, even though no negative effect was found.

Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs

  • Lee, Shin Ja;Shin, Nyeon Hak;Ok, Ji Un;Jung, Ho Sik;Chu, Gyo Moon;Kim, Jong Duk;Kim, In Ho;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.8
    • /
    • pp.1202-1208
    • /
    • 2009
  • Synbiotics is the term used for a mixture of probiotics (live microbial feed additives that beneficially affects the host animal) and prebiotics (non-digestible food ingredients that beneficially affect the organism). This study investigated the effect of probiotics from anaerobic microflora with prebiotics on growth performance, nutrient digestibility, noxious gas emission and fecal microbial population in weaning pigs. 150 pigs with an initial BW of 6.80${\pm}$0.32 kg (20 d of age) were randomly assigned to 5 dietary treatments as follows: i) US, basal diet+0.15% antibiotics (0.05% oxytetracycline 200 and 0.10% tiamulin 38 g), ii) BS, basal diet+0.2% synbiotics (probiotics from bacteria), iii) YS, basal diet+0.2% synbiotics (probiotics from yeast), iv) MS, basal diet+0.2% synbiotics (probiotics from mold), v) CS, basal diet+0.2% synbiotics (from compounds of bacteria, yeast and mold). The probiotics were contained in $10^{9}$ cfu/ml, $10^{5}$ cfu/ml and $10^{3}$ tfu/ml of bacteria, yeast and molds, respectively. The same prebiotics (mannan oligosaccharide, lactose, sodium acetate and ammonium citrate) was used for all the synbiotics. Pigs were housed individually for a 16-day experimental period. Growth performance showed no significant difference between antibiotic treatments and synbiotics-added treatments. The BS treatment showed higher (p<0.05) dry matter (DM) and nitrogen digestibility while ether extract and crude fiber digestibility were not affected by the dietary treatment. Also, the BS treatment decreased (p<0.05) fecal ammonia and amine gas emissions. Hydrogen sulfide concentration was also decreased (p<0.05) in BS, YS and MS treatments compared to other treatments. Moreover, all the synbioticsadded treatments increased fecal acetic acid concentration while the CS treatment had lower propionic acid concentration than the US treatment (p<0.05) gas emissions but decreased in fecal propionate gas emissions. Total fecal bacteria and Escherichia coli populations did not differ significantly among the treatments, while the Shigella counts were decreased (p<0.05) in synbiotics-included treatment. Fecal bacteria population was higher in the YS treatment than other treatments (p<0.05). The BS treatment had higher yeast concentration than YS, MS and CS treatments, while US treatment had higher mold concentrations than MS treatment (p<0.05). Therefore, the results of the present study suggest that synbiotics are as effective as antibiotics on growth performance, nutrient digestibility and fecal microflora composition in weaning pigs. Additionally, synbiotics from anaerobic microflora can decrease fecal noxious gas emission and synbiotics can substitute for antibiotics in weaning pigs.

Effect of Eugenol and Cinnamaldehyde on the Growth Performance, Nutrient Digestibility, Blood Characteristics, Fecal Microbial Shedding and Fecal Noxious Gas Content in Growing Pigs

  • Yan, L.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1178-1183
    • /
    • 2012
  • A 5-wk trial with 96 ($(Landrace{\times}Yorkshire){\times}Duroc$) pigs ($BW=26.56{\pm}0.42kg$) was conducted to investigate the effect of eugenol and cinnamaldehyde as feed additive in growing pigs. Pigs were assigned to 1 of 3 treatments in a randomized complete block design according to their sex and BW. Each treatment contained 8 replications with 4 pigs (2 gilts and 2 barrows) per pen. Treatments included: control (basal diet; CON); (basal diet+1,000 mg eugenol/kg; ET); (basal diet+1,000 mg cinnamaldehyde/kg; CT). Administration of eugenol and cinnamaldehyde did not did not affect (p>0.05) the growth performance and apparent total tract digestibility. Dietary CT and ET led to a higher (p<0.05) lymphocyte concentration compared with CON. The inclusion of CT and ET decreased (p<0.05) the fecal E. coli concentration (p>0.05). Pigs fed the diets supplemented with eugenol and cinnamaldehyde had reduced (p<0.05) $NH_3$ and $H_2S$ concentration throughout the experiment. In conclusion, results obtained in the present study indicated that supplementation of eugenol and cinamaldehyde had no effect on growth performance of pigs but exhibited lymphocyte-enhancing activity and decreased the fecal E. coli concentration and fecal noxious gas content ($NH_3$ and $H_2S$).

Silybum marianum seed extract supplementation positively affects the body weight of weaned piglets by improving voluntary feed intake

  • De Xin, Dang;Sungbo, Cho;In Ho, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.696-706
    • /
    • 2022
  • This study was conducted to evaluate the effects of dietary supplementation of Silybum marianum seed (SMS) extract on the growth performance, nutrient digestibility, fecal noxious gas emission, and hematology parameters in weaned piglets. A total of 120, 21-day-old weaned piglets ([Yorkshire × Landrace] × Duroc) were randomly assigned to 3 groups based on the average initial body weight (6.46 ± 0.45 kg). There were 8 replicate pens per treatment and 5 pigs (mixed sex) per pen. The experimental period was 42 days. Dietary groups included a basal diet, and a basal diet supplemented with 0.05% or 0.10% SMS extract. Feeding weaned piglets with SMS extract containing diet significantly increased average daily gain and average daily feed intake. Additionally, the supplementation of SMS extract had no significant effects on nutrient digestibility, serum hematology, and fecal noxious gas emission parameters. We considered that the supplementation of SMS extract had positive effects on the voluntary feed intake in weaned piglets, thus improving growth performance.