• Title/Summary/Keyword: Feature-based image matching

Search Result 339, Processing Time 0.025 seconds

A Multi-Stage Approach to Secure Digital Image Search over Public Cloud using Speeded-Up Robust Features (SURF) Algorithm

  • AL-Omari, Ahmad H.;Otair, Mohammed A.;Alzwahreh, Bayan N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.65-74
    • /
    • 2021
  • Digital image processing and retrieving have increasingly become very popular on the Internet and getting more attention from various multimedia fields. That results in additional privacy requirements placed on efficient image matching techniques in various applications. Hence, several searching methods have been developed when confidential images are used in image matching between pairs of security agencies, most of these search methods either limited by its cost or precision. This study proposes a secure and efficient method that preserves image privacy and confidentially between two communicating parties. To retrieve an image, feature vector is extracted from the given query image, and then the similarities with the stored database images features vector are calculated to retrieve the matched images based on an indexing scheme and matching strategy. We used a secure content-based image retrieval features detector algorithm called Speeded-Up Robust Features (SURF) algorithm over public cloud to extract the features and the Honey Encryption algorithm. The purpose of using the encrypted images database is to provide an accurate searching through encrypted documents without needing decryption. Progress in this area helps protect the privacy of sensitive data stored on the cloud. The experimental results (conducted on a well-known image-set) show that the performance of the proposed methodology achieved a noticeable enhancement level in terms of precision, recall, F-Measure, and execution time.

An Efficient Image Matching Scheme Based on Min-Max Similarity for Distorted Images (왜곡 영상을 위한 효과적인 최소-최대 유사도(Min-Max Similarity) 기반의 영상 정합 알고리즘)

  • Heo, Young-Jin;Jeong, Da-Mi;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1404-1414
    • /
    • 2019
  • Educational books commonly use some copyrighted images with various kinds of deformation for helping students understanding. When using several copyrighted images made by merging or editing distortion in legal, we need to pay a charge to original copyright holders for each image. In this paper, we propose an efficient matching algorithm by separating each copyrighted image with the merged and edited type including rotation, illumination change, and change of size. We use the Oriented FAST and Rotated BRIEF (ORB) method as a basic feature matching scheme. To improve the matching accuracy, we design a new MIN-MAX similarity in matching stage. With the distorted dataset, the proposed method shows up-to 97% of precision in experiments. Also, we demonstrate that the proposed similarity measure also outperforms compared to other measure which is commonly used.

Content-Based Image Retrieval using Color Feature of Region and Adaptive Color Histogram Bin Matching Method (영역의 컬러특징과 적응적 컬러 히스토그램 빈 매칭 방법을 이용한 내용기반 영상검색)

  • Park, Jung-Man;Yoo, Gi-Hyoung;Jang, Se-Young;Han, Deuk-Su;Kwak, Hoon-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.364-366
    • /
    • 2005
  • From the 90's, the image information retrieval methods have been on progress. As good examples of the methods, Conventional histogram method and merged-color histogram method were introduced. They could get good result in image retrieval. However, Conventional histogram method has disadvantages if the histogram is shifted as a result of intensity change. Merged-color histogram, also, causes more process so, it needs more time to retrieve images. In this paper, we propose an improved new method using Adaptive Color Histogram Bin Matching(AHB) in image retrieval. The proposed method has been tested and verified through a number of simulations using hundreds of images in a database. The simulation results have Quickly yielded the highly accurate candidate images in comparison to other retrieval methods. We show that AHB's can give superior results to color histograms for image retrieval.

  • PDF

Target Object Image Extraction from 3D Space using Stereo Cameras

  • Yoo, Chae-Gon;Jung, Chang-Sung;Hwang, Chi-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1678-1680
    • /
    • 2002
  • Stereo matching technique is used in many practical fields like satellite image analysis and computer vision. In this paper, we suggest a method to extract a target object image from a complicated background. For example, human face image can be extracted from random background. This method can be applied to computer vision such as security system, dressing simulation by use of extracted human face, 3D modeling, and security system. Many researches about stereo matching have been performed. Conventional approaches can be categorized into area-based and feature-based method. In this paper, we start from area-based method and apply area tracking using scanning window. Coarse depth information is used for area merging process using area searching data. Finally, we produce a target object image.

  • PDF

An Object-Level Feature Representation Model for the Multi-target Retrieval of Remote Sensing Images

  • Zeng, Zhi;Du, Zhenhong;Liu, Renyi
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.2
    • /
    • pp.65-77
    • /
    • 2014
  • To address the problem of multi-target retrieval (MTR) of remote sensing images, this study proposes a new object-level feature representation model. The model provides an enhanced application image representation that improves the efficiency of MTR. Generating the model in our scheme includes processes, such as object-oriented image segmentation, feature parameter calculation, and symbolic image database construction. The proposed model uses the spatial representation method of the extended nine-direction lower-triangular (9DLT) matrix to combine spatial relationships among objects, and organizes the image features according to MPEG-7 standards. A similarity metric method is proposed that improves the precision of similarity retrieval. Our method provides a trade-off strategy that supports flexible matching on the target features, or the spatial relationship between the query target and the image database. We implement this retrieval framework on a dataset of remote sensing images. Experimental results show that the proposed model achieves competitive and high-retrieval precision.

Side Scan Sonar based Pose-graph SLAM (사이드 스캔 소나 기반 Pose-graph SLAM)

  • Gwon, Dae-Hyeon;Kim, Joowan;Kim, Moon Hwan;Park, Ho Gyu;Kim, Tae Yeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.385-394
    • /
    • 2017
  • Side scanning sonar (SSS) provides valuable information for robot navigation. However using the side scanning sonar images in the navigation was not fully studied. In this paper, we use range data, and side scanning sonar images from UnderWater Simulator (UWSim) and propose measurement models in a feature based simultaneous localization and mapping (SLAM) framework. The range data is obtained by echosounder and sidescanning sonar images from side scan sonar module for UWSim. For the feature, we used the A-KAZE feature for the SSS image matching and adjusting the relative robot pose by SSS bundle adjustment (BA) with Ceres solver. We use BA for the loop closure constraint of pose-graph SLAM. We used the Incremental Smoothing and Mapping (iSAM) to optimize the graph. The optimized trajectory was compared against the dead reckoning (DR).

A Research on Cylindrical Pill Bottle Recognition with YOLOv8 and ORB

  • Dae-Hyun Kim;Hyo Hyun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.13-20
    • /
    • 2024
  • This paper introduces a method for generating model images that can identify specific cylindrical medicine containers in videos and investigates data collection techniques. Previous research had separated object detection from specific object recognition, making it challenging to apply automated image stitching. A significant issue was that the coordinate-based object detection method included extraneous information from outside the object area during the image stitching process. To overcome these challenges, this study applies the newly released YOLOv8 (You Only Look Once) segmentation technique to vertically rotating pill bottles video and employs the ORB (Oriented FAST and Rotated BRIEF) feature matching algorithm to automate model image generation. The research findings demonstrate that applying segmentation techniques improves recognition accuracy when identifying specific pill bottles. The model images created with the feature matching algorithm could accurately identify the specific pill bottles.

Text Verification Based on Sub-Image Matching (부분 영상 매칭에 기반한 텍스트 검증)

  • Son Hwa Jeong;Jeong Seon Hwa;Kim Soo Hyung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.115-122
    • /
    • 2005
  • The sub-mage matching problem in which one image contains some part of the other image, has been mostly investigated on natural images. In this paper, we propose two sub-image matching techniques: mesh-based method and correlation-based method, that are efficiently used to match text images. Mesh-based method consists of two stages, box alignment and similarity measurement by extracting the mesh feature from the two images. Correlation-based method determines the similarity using the correlation of the two images based on FFT function. We have applied the two methods to the text verification in a postal automation system and observed that the accuracy of correlation-based method is $92.7\%$ while that of mesh-based method is $90.1\%$.

Image Mosaic using Multiresolution Wavelet Analysis (다해상도 웨이블렛 분석 기법을 이용한 영상 모자이크)

  • Yang, In-Tae;Oh, Myung-Jin;Lee, In-Yeub
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.61-66
    • /
    • 2004
  • By the advent of the high-resolution Satellite imagery, there are increasing needs in image mosaicking technology which can be applied to various application fields such as GIS(Geographic Information system). To mosaic images, various methods such as image matching and histogram modification are needed. In this study, automated image mosaicking is performed using image matching method based on the multi-resolution wavelet analysis(MWA). Specifically, both area based and feature based matching method are embedded in the multi-resolution wavelet analysis to construct seam line.; seam points are extracted then polygon clipping method are applied to define overlapped area of two adjoining images. Before mosaicking, radiometric correction is proceeded by using histogram matching method. As a result, mosaicking area is automatically extracted by using polygon clipping method. Also, seamless image is acquired using multi-resolution wavelet analysis.

  • PDF

Identification of Transformed Image Using the Composition of Features

  • Yang, Won-Keun;Cho, A-Young;Cho, Ik-Hwan;Oh, Weon-Geun;Jeong, Dong-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.764-776
    • /
    • 2008
  • Image identification is the process of checking whether the query image is the transformed version of the specific original image or not. In this paper, image identification method based on feature composition is proposed. Used features include color distance, texture information and average pixel intensity. We extract color characteristics using color distance and texture information by Modified Generalized Symmetry Transform as well as average intensity of each pixel as features. Individual feature is quantized adaptively to be used as bins of histogram. The histogram is normalized according to data type and it is used as the signature in comparing the query image with database images. In matching part, Manhattan distance is used for measuring distance between two signatures. To evaluate the performance of the proposed method, independent test and accuracy test are achieved. In independent test, 60,433 images are used to evaluate the ability of discrimination between different images. And 4,002 original images and its 29 transformed versions are used in accuracy test, which evaluate the ability that the proposed algorithm can find the original image correctly when some transforms was applied in original image. Experiment results show that the proposed identification method has good performance in accuracy test. And the proposed method is very useful in real environment because of its high accuracy and fast matching capacity.

  • PDF