3차원 정보 복원이나 형상 복원, 가상 물체 삽입 등의 과정을 수행하기 위해서는 영상 촬영에 사용된 카메라의 위치와 방향, 그리고 초점 거리 등의 변수가 필요하다. 본 논문에서는 이차원 영상간의 대응관계를 이용하여 카메라 내부 변수인 초점 거리를 추정하는 셀프 캘리브레이션(self-calibration) 과정에서 특징점의 위치가 초점 거리 추정에 미치는 영향을 분석하였다. 캘리브레이션에 사용하는 특징점과 주점과의 거리에 따라 초점 거리 추정 결과에 미치는 영향을 시뮬레이션을 통하여 검증하고, 이를 바탕으로 오차 민감도를 줄일 수 있는 특징점 선택 방법을 제안한다.
To improve the visual servoing performance, several strategies were proposed in the past such as redundant feature points, using a point with different height and weighted selection of image features. The performance of these visual servoing methods depends on the configuration between the camera and object. And redundant feature points require much computation efforts. This paper proposes the visual servoing method based on the disturbance obsever, which compensates the upper off-diagonal component of image feature jacobian to be the null. The performance indices such as sensitivity for a measure of richness, sensitivity of the control to noise, and comtrollability are shown to be improved when the image feature Jacobian is given as a block diagonal matrix. Computer simulations are carried out for a UUMA560 robot and show some results to verify the effectiveness of the proposed method.
Object detection and parameter estimation in point cloud data is a relevant subject to robotics, reverse engineering, computer vision, and sport mechanics. In this paper a software is presented for fully-automatic object detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting. The newly developed algorithms for orthogonal distance fitting (ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. Curvature analysis of the local quadric surfaces fitted to small patches of point cloud provides the necessary seed information for automatic model selection, point segmentation, and model fitting. The performance of the software on a variety of point cloud data will be demonstrated live.
본 논문에서는 저조도 야간 감시 시스템을 위한 열영상 기반의 객체 검출 알고리즘을 제안한다. 기존 Adaboost를 이용한 Haar 특징점 선택 알고리즘은 학습 샘플에 대한 유사하거나 중복되는 특징점의 선택 문제와 잡음에 취약한 경우가 많았다. 또한 저조도 야간 환경의 감시 영상에서 얻어지는 잡음을 특징점 세트에서 제거하고 빠르고 효율적인 실시간 특징점 선택이 이루어질 수 있게 가벼운 확장형 Haar 특징점과 Adaboost 학습 알고리즘을 사용하여 구현하였다. 야간 저조도 환경에서 움직임이 있는 비예측 객체를 인식하기 위하여 열영상으로 촬영된 이미지에 확장 Haar 특징점을 사용하여 객체를 인식한다. 비디오 프레임 800*600 크기의 열영상 이미지를 입력으로 하는 Adaboost 학습 알고리즘을 CUDA 9.0 플랫폼으로 구현하여 시뮬레이션을 시행한다. 그 결과 객체 검출 결과는 성공률이 약 90% 이상임을 확인하였고, 이는 일반영상에 히스토그램 이퀄라이징 연산을 거쳐 얻어진 연산 결과보다 약 30% 더 빠른 처리 속도를 얻을 수 있었다.
철도 선로전환기는 열차의 진로를 현재의 궤도에서 다른 궤도로 제어하는 장치이다. 선로전환기의 이상 상황은 탈선 등과 같은 심각한 문제를 발생할 수 있기 때문에, 선로전환기의 스트레스를 지속적으로 모니터링 하는 것은 매우 중요하다. 본 논문에서는 선로전환기가 작동할 때 발생하는 소리 정보를 이용하여 선로전환기의 스트레스를 탐지하는 시스템을 제안한다. 제안하는 시스템은 선로전환기의 동작 시 발생하는 소리 데이터로부터 자질 선택방법을 사용하여 스트레스 탐지에 유효한 감소된 차원의 자질 부분집합을 선택한 후, 기계학습의 대표적 모델인 SVM(Support Vector Machine)을 이용하여 선로전환기의 스트레스 상태 여부를 탐지한다. 테스트용 선로전환기를 실제 구동하며 수집한 소리 데이터를 이용하여, 본 논문에서 제안하는 시스템의 성능을 실험적으로 검증한 바 98%를 넘는 정확도를 확인하였다.
To improve the visual servoing performance, several strategies were proposed in the past such as redundant feature points, using a point with different height and weighted selection of image features. The performance of these visual servoing methods depends on the configuration between the camera and object. And redundant feature points require much computation efforts. This paper proposes the visual servoing m based on the disturbance observer, which compe the upper off-diagonal component of image fe Jacobian to be null. The performance indices su sensitivity for a measure of richness, sensitiv the control to noise, and controllability are sho improved when the image feature Jacobian is giv a block diagonal matrix. Computer simulation carried out for a PUMA560 robot and show results to verify the effectiveness of the pro method.
Many three-dimensional object modeling and display methods for computer graphics and computer vision have been developed. Recently, with the help of medical imaging devices such as computerized tomography, magnetic resonance image, etc., some of those object modeling and display methods have been widely used for capturing the shape, structure and other properties of real objects in many medical applications. In this paper, we propose the reconstruction and display method of the three-dimensional object from a series of the cross sectonal image. It is implemented by using the automatic threshold selection method and the contour following algorithm. The combination of curvature and distance, we select feature points. Those feature points are the candidates for the tiling method. As a results, it is proven that this proposed method is very effective and useful in the comprehension of the object's structure. Without the technician's responce, it can be automated.
본 논문은 시험 표본 주위의 영역에 대한 속성을 이용한 다중 인식기 선택 방법을 제안한다. 기존의 DCS-LA 동적 인식기 선택 방법은 시험 표본 주위의 학습표본들을 사용해서 각 인식기의 국부적 정확성을 계산하여 인식기를 동적으로 선택하기 때문에 인식 시간이 오래 걸린다. 본 논문에서는 특징공간에서 국부적인 속성을 계산해서 그 속성값에 적합한 인식기를 미리 선정해서 저장해 놓은 후 시험 표본이 들어오면 그 주변의 속성값에 따라 저장된 인식기에서 선택을 하기 때문에 인식시간을 줄일 수 있다. 국부적인 속성으로는 표본 주위의 작은 영역에 대한 엔트로피와 밀도를 계산하여 사용하였으며 이들을 특징공간속성(Feature Space Attribute)라고 하였다. 이들 두 속성으로 이루어지는 속성 공간을 규칙적인 사각형 셀로 나누어, 학습과정에서 각각의 학습표본에 대해 계산된 속성값이 어떤 셀에 속하는지를 구한다. 또한 각 셀에 속하는 학습표본들에 대해 각 인식기의 국부적 정확도를 구하여 셀에 저장한다. 시험 과정에서 시험표본에 대해 속성값 계산을 통해 그 표본이 속하는 셀을 구한 후 그 셀에서 국부적 정확도가 가장 높은 인식기로 인식한다. Elena 데이타베이스를 사용해서 기존의 방법과 제안된 방법을 비교하였다. 제안된 방법은 기존의 DCS-LA와 거의 같은 인식률을 나타내지만 인식속도는 약 4배 가까이 빨라짐을 실험을 통해 확인할 수 있었다.
본 논문에서는 특징기반 물체추적을 위해 많이 사용되고 있는 KLT(Kanade-Lucas-Tomasi) 알고리즘을 소개하고, 이 알고리즘을 이용한 특징점(corner) 추출시, 영상에서 잡음의 영향이 KLT 알고리즘의 성능에 어떤 영향을 미치는지 잡음이 포함된 영상과 포함되지 않은 영상을 이용하여 안정된 특징점 추출을 위한 실험을 실시하고 비교 분석하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권6호
/
pp.3086-3103
/
2017
Video images captured by vehicle cameras often contain blurry or dithering frames due to inadvertent motion from bumps in the road or by insufficient illumination during the morning or evening, which greatly reduces the perception of objects expression and recognition from the records. Therefore, a real-time electronic stabilization method to correct fuzzy video from driving recorders has been proposed. In the first stage of feature detection, a coarse-to-fine inspection policy and a scale nonlinear diffusion filter are proposed to provide more accurate keypoints. Second, a new antiblurry binary descriptor and a feature point selection strategy for unintentional estimation are proposed, which brought more discriminative power. In addition, a new evaluation criterion for affine region detectors is presented based on the percentage interval of repeatability. The experiments show that the proposed method exhibits improvement in detecting blurry corner points. Moreover, it improves the performance of the algorithm and guarantees high processing speed at the same time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.