• Title/Summary/Keyword: Feature modeling

Search Result 639, Processing Time 0.025 seconds

The Role of stock market management and social media - Analyzing the types of individual investor and topic - (주식시장관리제도와 소셜 미디어의 역할 - 개인 투자자 집단 유형과 토픽 분석 -)

  • Kim, Jung-Su;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.34 no.5
    • /
    • pp.23-47
    • /
    • 2015
  • In the Korea stock market, individual investors have perceived stock as short arbitrage investment, not long-term investment strategy. In order to reinforce stock market transparency and soundness, it is important to enforce the measures for stock market management. Especially, stock market event caused by financial policy can be given individual investors negative information regarding a stock trading. Thus, it is a need for investigating whether comprehensive review of listing eligibility is influenced on individual investors' responses and stock behaviors in respect of effectiveness. The purpose of this study to examine the relations between such stock market management and transitional aspect of individual investors' trading types and response on the based of pre- and post-event occurrence. Using an dataset of user's text messages on 9 firms posted on the firm-based social media (i.e., Naver, Daum, Paxnet) over the period 2009 to 2014. And we performed text-clustering and topic modeling according to keywords for classifying into investors group and non-investors groups and two types of investors were categorized depending on main topic transition by event windows in Comprehensive review of listing eligibility. The results indicated that a variety of stockholders existed in the stock. And the ratio of non-investors group was on the decrease, on the other hand, the proportion of investors group veer onto the side of pre-pattern after comprehensive review of listing eligibility. A distinctive feature of our study is to explain the influence of stock market management on response changes of individual investors as well as to categorize in accordance with time progression. Implications an suggestions for future research were also discussed.

  • PDF

A Three-Dimensional Facial Modeling and Prediction System (3차원 얼굴 모델링과 예측 시스템)

  • Gu, Bon-Gwan;Jeong, Cheol-Hui;Cho, Sun-Young;Lee, Myeong-Won
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • In this paper, we describe the development of a system for generating a 3-dimensional human face and predicting it's appearance as it ages over subsequent years using 3D scanned facial data and photo images. It is composed of 3-dimensional texture mapping functions, a facial definition parameter input tool, and 3-dimensional facial prediction algorithms. With the texture mapping functions, we can generate a new model of a given face at a specified age using a scanned facial model and photo images. The texture mapping is done using three photo images - a front and two side images of a face. The facial definition parameter input tool is a user interface necessary for texture mapping and used for matching facial feature points between photo images and a 3D scanned facial model in order to obtain material values in high resolution. We have calculated material values for future facial models and predicted future facial models in high resolution with a statistical analysis using 100 scanned facial models.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling (천해에서 해저면 반사파의 모델링을 통한 물체의 탐지)

  • On, Baeksan;Kim, Sunho;Moon, Woosik;Im, Sungbin;Seo, Iksu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.55-65
    • /
    • 2016
  • Detecting an object which is located at seabed is an important issue for various areas. This paper presents an approach to detection of an object that is placed at seabed in the shallow water. A conventional scheme is to employ a side-scan sonar to obtain images of a detection area and to use image processing schemes to recognize an object. Since this approach relies on high frequency signals to get clear images, its detection range becomes shorter and the processing time is getting longer. In this paper, we consider an active sonar system that is repeatedly sending a linear frequency modulated signal of 6~20 kHz in the shallow water of 100m depth. The proposed approach is to model consecutively received reflected signals and to measure their modeling error magnitudes which decide the existence of an object placed on seabed depending on relative magnitude with respect to threshold value. The feature of this approach is to only require an assumption that the seabed consists of an homogeneous sediment, and not to require a prior information on the specific properties of the sediment. We verify the proposed approach in terms of detection probability through computer simulation.

Geospatial Data Modeling for 3D Digital Mapping (3차원 수치지도 생성을 위한 지형공간 데이터 모델링)

  • Lee, Dong-Cheon;Bae, Kyoung-Ho;Ryu, Keun-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.393-400
    • /
    • 2009
  • Recently demand for the 3D modeling technology to reconstruct real world is getting increasing. However, existing geospatial data are mainly based on the 2D space. In addition, most of the geospatial data provide geometric information only. In consequence, there are limits in various applications to utilize information from those data and to reconstruct the real world in 3D space. Therefore, it is required to develop efficient 3D mapping methodology and data for- mat to establish geospatial database. Especially digital elevation model(DEM) is one of the essential geospatial data, however, DEM provides only spatially distributed 3D coordinates of the natural and artificial surfaces. Moreover, most of DEMs are generated without considering terrain properties such as surface roughness, terrain type, spatial resolution, feature and so on. This paper suggests adaptive and flexible geospatial data format that has possibility to include various information such as terrain characteristics, multiple resolutions, interpolation methods, break line information, model keypoints, and other physical property. The study area was categorized into mountainous area, gently rolling area, and flat area by taking the terrain characteristics into account with respect to terrain roughness. Different resolutions and interpolation methods were applied to each area. Finally, a 3D digital map derived from aerial photographs was integrated with the geospatial data and visualized.

A Study of 3D Modeling of Compressed Urban LiDAR Data Using VRML (VRML을 이용한 도심지역 LiDAR 압축자료의 3차원 표현)

  • Jang, Young-Woon;Choi, Yun-Woong;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.3-8
    • /
    • 2011
  • Recently, the demand for enterprise for service map providing and portal site services of a 3D virtual city model for public users has been expanding. Also, accuracy of the data, transfer rate and the update for the update for the lapse of time emerge are considered as more impertant factors, by providing 3D information with the web or mobile devices. With the latest technology, we have seen various 3D data through the web. With the VRML progressing actively, because it can provide a virtual display of the world and all aspects of interaction with web. It offers installation of simple plug-in without extra cost on the web. LiDAR system can obtain spatial data easily and accurately, as supprted by numerous researches and applications. However, in general, LiDAR data is obtained in the form of an irregular point cloud. So, in case of using data without converting, high processor is needed for presenting 2D forms from point data composed of 3D data and the data increase. This study expresses urban LiDAR data in 3D, 2D raster data that was applied by compressing algorithm that was used for solving the problems of large storage space and processing. For expressing 3D, algorithm that converts compressed LiDAR data into code Suited to VRML was made. Finally, urban area was expressed in 3D with expressing ground and feature separately.

Development of a Korean Speech Recognition Platform (ECHOS) (한국어 음성인식 플랫폼 (ECHOS) 개발)

  • Kwon Oh-Wook;Kwon Sukbong;Jang Gyucheol;Yun Sungrack;Kim Yong-Rae;Jang Kwang-Dong;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.8
    • /
    • pp.498-504
    • /
    • 2005
  • We introduce a Korean speech recognition platform (ECHOS) developed for education and research Purposes. ECHOS lowers the entry barrier to speech recognition research and can be used as a reference engine by providing elementary speech recognition modules. It has an easy simple object-oriented architecture, implemented in the C++ language with the standard template library. The input of the ECHOS is digital speech data sampled at 8 or 16 kHz. Its output is the 1-best recognition result. N-best recognition results, and a word graph. The recognition engine is composed of MFCC/PLP feature extraction, HMM-based acoustic modeling, n-gram language modeling, finite state network (FSN)- and lexical tree-based search algorithms. It can handle various tasks from isolated word recognition to large vocabulary continuous speech recognition. We compare the performance of ECHOS and hidden Markov model toolkit (HTK) for validation. In an FSN-based task. ECHOS shows similar word accuracy while the recognition time is doubled because of object-oriented implementation. For a 8000-word continuous speech recognition task, using the lexical tree search algorithm different from the algorithm used in HTK, it increases the word error rate by $40\%$ relatively but reduces the recognition time to half.

A Study on OLE/COM-based GIS Data Provider Component Development Toward Application System Development (응용시스템 구축을 위한 OLE/COM 기반의 GIS 데이터 제공자 컴포넌트 시스템에 관한 연구)

  • 김민수;김광수;오병우;이기원
    • Spatial Information Research
    • /
    • v.7 no.2
    • /
    • pp.175-190
    • /
    • 1999
  • Recently , as GIS technology is rapidly improved and stabilized, there are some needs to reuse pre-developed and powerful GIS technology. GIS standardization based on components and open interfaces becomes a way to solve those reusability of previous GIS technology. This GIS standardization currently focuses on building the GIS Data Infrastructure that is being deployed globally. Especially, OpenGIS consortium which is mainly made up of international GIS leading vendors is announcing some GIS abstract specifications and implementation specifications. This study focuses on how could we design and implement the OLE/COM-based data provider component based on various DBMS or file systems, how could these data provider components be used for enterprise UIS(Urban Information Systems) and how could various formatted GIS data be shared in one system. Also some problems practically caused by an implementation process of data provider component are listed up and some solutions are given. Furthermore, design and analysis of UML(Unified Modeling Language) was reformed through the data provider component development task and this UML methodology is able to indicate a standardized model for newly developed data provider component.

  • PDF

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.

Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model (모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템)

  • Eum, Hyukmin;Lee, Heejin;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2016
  • In this paper, recognition system for continuous human action is explained by using motion history image and histogram of oriented gradient with spotter model based on depth information, and the spotter model which performs action spotting is proposed to improve recognition performance in the recognition system. The steps of this system are composed of pre-processing, human action and spotter modeling and continuous human action recognition. In pre-processing process, Depth-MHI-HOG is used to extract space-time template-based features after image segmentation, and human action and spotter modeling generates sequence by using the extracted feature. Human action models which are appropriate for each of defined action and a proposed spotter model are created by using these generated sequences and the hidden markov model. Continuous human action recognition performs action spotting to segment meaningful action and meaningless action by the spotter model in continuous action sequence, and continuously recognizes human action comparing probability values of model for meaningful action sequence. Experimental results demonstrate that the proposed model efficiently improves recognition performance in continuous action recognition system.