• 제목/요약/키워드: Feature matrix

검색결과 500건 처리시간 0.028초

An Improved method of Two Stage Linear Discriminant Analysis

  • Chen, Yarui;Tao, Xin;Xiong, Congcong;Yang, Jucheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1243-1263
    • /
    • 2018
  • The two-stage linear discrimination analysis (TSLDA) is a feature extraction technique to solve the small size sample problem in the field of image recognition. The TSLDA has retained all subspace information of the between-class scatter and within-class scatter. However, the feature information in the four subspaces may not be entirely beneficial for classification, and the regularization procedure for eliminating singular metrics in TSLDA has higher time complexity. In order to address these drawbacks, this paper proposes an improved two-stage linear discriminant analysis (Improved TSLDA). The Improved TSLDA proposes a selection and compression method to extract superior feature information from the four subspaces to constitute optimal projection space, where it defines a single Fisher criterion to measure the importance of single feature vector. Meanwhile, Improved TSLDA also applies an approximation matrix method to eliminate the singular matrices and reduce its time complexity. This paper presents comparative experiments on five face databases and one handwritten digit database to validate the effectiveness of the Improved TSLDA.

설계 프리미티브 간의 교차형상을 통한 가공 피쳐 인식 (Machining Feature Recognition with Intersection Geometry between Design Primitives)

  • 정채봉;김재정
    • 한국CDE학회논문집
    • /
    • 제4권1호
    • /
    • pp.43-51
    • /
    • 1999
  • Producing the relevant information (features) from the CAD models of CAM, called feature recognition or extraction, is the essential stage for the integration of CAD and CAM. Most feature recognition methods, however, have problems in the recognition of intersecting features because they do not handle the intersection geometry properly. In this paper, we propose a machining feature recognition algorithm, which has a solid model consisting of orthogonal primitives as input. The algorithm calculates candidate features and constitutes the Intersection Geometry Matrix which is necessary to represent the spatial relation of candidate features. Finally, it recognizes machining features from the proposed candidate features dividing and growing systems using half space and Boolean operation. The algorithm has the following characteristics: Though the geometry of part is complex due to the intersections of design primitives, it can recognize the necessary machining features. In addition, it creates the Maximal Feature Volumes independent of the machining sequences at the feature recognition stage so that it can easily accommodate the change of decision criteria of machining orders.

  • PDF

PCA와 입자 군집 최적화 알고리즘을 이용한 얼굴이미지에서 특징선택에 관한 연구 (A Study on Feature Selection in Face Image Using Principal Component Analysis and Particle Swarm Optimization Algorithm)

  • 김웅기;오성권;김현기
    • 전기학회논문지
    • /
    • 제58권12호
    • /
    • pp.2511-2519
    • /
    • 2009
  • In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.

Gabor 웨이블릿을 이용한 회전 변화에 무관한 질감 분류 기법 (Rotation-Invariant Texture Classification Using Gabor Wavelet)

  • 김원희;윤청파;문광석;김종남
    • 한국멀티미디어학회논문지
    • /
    • 제10권9호
    • /
    • pp.1125-1134
    • /
    • 2007
  • 본 논문에서는 가보 웨이블릿(Gabor Wavelet)을 이용한 회전 변화에 무관한 질감 분류 기법을 제안한다. 기존의 방법들은 대용량 질감 데이터베이스에서 낮은 정정분류비(Correct Classification Rate)를 나타내었다. 제안한 방법은 가보 웨이블릿 필터링 된 영상에서 전역 특징 벡터(Global Feature Vector)와 지역 특징행렬(Local Feature Matrix)을 정의하였다. 회전 변화에 무관한 두 가지 특징 그룹을 이용하여 개선된 유사도 측정 판별식(Discriminant)을 정의하였으며, 실험을 통하여 대용량 질감 데이터베이스에 적용한 결과 향상된 정정분류비를 얻을 수 있었다. 또한 질감 영상 스펙트럼의 대칭성을 이용하여 기존의 방법보다 실험회수를 50% 가까이 감소시켰다 결론적으로 112개의 브로다츠(Brodatz) 질감 클래스에서 비교 방법에 따라 차이는 있으나 $2.3%{\sim}15.6%$의 향상된 정정분류비를 얻었다.

  • PDF

행렬 분해 제약을 사용한 다중 영상에서의 투영 복원 (Projective Reconstruction from Multiple Images using Matrix Decomposition Constraints)

  • 안호영;박종승
    • 한국멀티미디어학회논문지
    • /
    • 제15권6호
    • /
    • pp.770-783
    • /
    • 2012
  • 본 논문에서는 다중 영상에서 추출된 특징점을 사용해서 투영 공간에서의 카메라 행렬과 3차원 정점좌표를 계산하는 방법을 제안한다. 수치적인 안정성을 위해서 특징점을 정규화한 후 복원하며 얻어지는 카메라 행렬과 3차원 정점에 대해서 비정규화한다. 카메라 행렬과 3차원 정점의 초기값을 얻기 위해서 특이값 분해기법을 사용해서 투영 깊이가 적용된 측정 행렬을 분해한다. 행렬 분해 제약을 사용하여 카메라 행렬과 3차원 정점을 투영 복원한다. 투영 복원 과정에서는 비선형 반복적 최적화 방법이 사용된다. 실험 결과 제안방법은 대체로 적절한 정확성을 얻었고 오차의 편차가 크지 않았다.

Dual graph-regularized Constrained Nonnegative Matrix Factorization for Image Clustering

  • Sun, Jing;Cai, Xibiao;Sun, Fuming;Hong, Richang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2607-2627
    • /
    • 2017
  • Nonnegative matrix factorization (NMF) has received considerable attention due to its effectiveness of reducing high dimensional data and importance of producing a parts-based image representation. Most of existing NMF variants attempt to address the assertion that the observed data distribute on a nonlinear low-dimensional manifold. However, recent research results showed that not only the observed data but also the features lie on the low-dimensional manifolds. In addition, a few hard priori label information is available and thus helps to uncover the intrinsic geometrical and discriminative structures of the data space. Motivated by the two aspects above mentioned, we propose a novel algorithm to enhance the effectiveness of image representation, called Dual graph-regularized Constrained Nonnegative Matrix Factorization (DCNMF). The underlying philosophy of the proposed method is that it not only considers the geometric structures of the data manifold and the feature manifold simultaneously, but also mines valuable information from a few known labeled examples. These schemes will improve the performance of image representation and thus enhance the effectiveness of image classification. Extensive experiments on common benchmarks demonstrated that DCNMF has its superiority in image classification compared with state-of-the-art methods.

VQ코드의 천이 행렬과 이산 HMM을 이용한 한국어 단어인식 (Korean Word Recognition using the Transition Matrix of VQ-Code and DHMM)

  • 정광우;홍광석;박병철
    • 한국음향학회지
    • /
    • 제13권4호
    • /
    • pp.40-49
    • /
    • 1994
  • 본 논문에서는 단어 인식 시스템의 성능 개선을 위하여 다음과 같은 두가지 방법을 제안한다. 첫번째 방법은 VQ 코드간의 천이를 안정화시키기 위하여 음성신호의 특징벡터 시퀀스에 관성을 적용하는 방법이고, 두번째 방법은 이산 HMM 모델에서 인접 프레임 간의 시간 상관성을 고려하기 위하여 VQ 코드의 천이행렬을 출력 심벌의 관측확률에 가중치로 이용하여 새로운 관측확률을 발생하는 방법이다. 특징벡터 시퀀스에 관성을 도입함으로서, SOFM상의 각 단어에 대한 반응경로에서 확률분포가 중첩되는 것을 억제하여 HMM의 상태천이를 안정화 시킬 수 있다. 기존의 이산 HMM에 VQ 코드의 천이행렬을 가중치로 적용함으로써, 특징벡터의 확률분포를 더욱 세분화하고, 특징분포를 적당한 영역으로 제한함으로써 인식시스템의 성능을 개선할 수 있다. 제안한 방법을 평가하기 위하여 50개의 DDD 지역명을 대상으로 인식 실험을 수행하였다. 실험 결과에 의하면, 제안된 방법이 기존의 HMM 모델에 비해 화자종속 실험에서는 $4.2\%$의 인식률 향상과 화자 독립 실험에서는 $12.45\%$의 인식률 향상을 얻을 수 있었다.

  • PDF

가변추출간격상(假變抽出間格上)에서 분산(分散)-공분산(共分散) 행례(行例)에 대한 다변량(多變量) 기하이동평균(幾何移動平均) 처리원(處理圓) (Multivariate EWMA Control Charts for the Variance-Covariance Matrix with Variable Sampling Intervals)

  • 조교영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제4권
    • /
    • pp.31-44
    • /
    • 1993
  • Multivariate exponentially weighted moving average (EWMA) control charts for monitoring the variance-covariance matrix are investigated. A variable sampling interval (VSI) feature is considered in these charts. Multivariate EWMA control charts for monitoring the variance-covariance matrix are compared on the basis of their average time to signal (ATS) performances. The numerical results show that multivariate VSI EWMA control charts are more efficient than corrsponding multivariate fixed sampling interval (FSI) EWMA control charts.

  • PDF

추이적 행렬을 이용한 패트리 넷 모델의 분석방법에 대한 연구 (A study on the analysis method of Petri Net Models Using the Transitive Matrix)

  • 송유진;이종근
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.13-24
    • /
    • 2001
  • We propose a divide-conquer method of Petri nets under the condition of one-boundedness for all the Petri nets. We introduce the P-invariant transitive matrix of Petri nets and relationship between them. The feature of the P-invariant transitive matrix is that each element stands for the transitive relationship between input place and output place through the firing of the enable transition.

  • PDF

의사 역행렬을 이용한 애니메이션의 초개인적 갈등(SPC) 강도 관련 다학제적 연구 (Research of the Strength of Super Personal Conflicts in Animations using Pseudo Inverse)

  • 김재호;장정양;왕위차오;장소은;이태린
    • 한국과학예술포럼
    • /
    • 제30권
    • /
    • pp.41-56
    • /
    • 2017
  • 본 연구는 애니메이션 갈등의 VST 특징을 조사하고 강도를 측정한 이태린의 연구 결과에 대한 심화연구로 초개인적 갈등영상과 초개인적 갈등 값을 기반으로 시작되었다. 본 연구의 목적은 초개인적 갈등 강도 값(ESSPC)을 자동 계산하는 모델을 찾아내는 것이다. 따라서 본 논문에서 SPC 영상을 분석하였으며, ESSPC 값을 자동 계산하는 모델을 찾아내기 위해 의사 역행렬(Pseudo Inverse matrix)을 사용하였다. 연구결과 및 내용은 다음과 같다. 이들을 활용하여, 1)SPC를 분석하기 위한 20 개의 영상 Feature값을 제안하였다. 그리고 2)의사 역행렬(Pseudo Inverse matrix)을 사용하여 ESSPC 값을 자동 계산하는 선형모델을 찾아냈다. 그 결과로 3)제안된 시스템은 9.25%의 평균 자승오차의 제곱근 보이며, 그 효율성이 증명되었다. 이러한 연구결과를 바탕으로 이를 계속 발전시켜 성공적 애니메이션의 제작을 위한 자동 검증시스템을 개발하고자 한다.