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Abstract 
 

The two-stage linear discrimination analysis (TSLDA) is a feature extraction technique to 
solve the small size sample problem in the field of image recognition. The TSLDA has 
retained all subspace information of the between-class scatter and within-class scatter. 
However, the feature information in the four subspaces may not be entirely beneficial for 
classification, and the regularization procedure for eliminating singular metrics in TSLDA has 
higher time complexity. In order to address these drawbacks, this paper proposes an improved 
two-stage linear discriminant analysis (Improved TSLDA). The Improved TSLDA proposes a 
selection and compression method to extract superior feature information from the four 
subspaces to constitute optimal projection space, where it defines a single Fisher criterion to 
measure the importance of single feature vector. Meanwhile, Improved TSLDA also applies 
an approximation matrix method to eliminate the singular matrices and reduce its time 
complexity. This paper presents comparative experiments on five face databases and one 
handwritten digit database to validate the effectiveness of the Improved TSLDA. 
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1. Introduction 

Linear discriminant analysis (LDA) is a classical method for dimensionality reduction and 
feature extraction, and it has been widely used in the face recognition, fingerprint 
recognition,gait recognition and other fields. LDA projects the training samples from higher 
dimensional space to lower dimentisonal space through maximizing the between-class scatter 
and minimizing the within-class scatter in the lower dimensional space. Classical LDA aims to 
find an optimal projection matrix ( )d hR h d×∈ <W  by maximizing the loss function J(W), 
which is the radio of the between-class scatter matrix d d

b R ×∈S to the within-class scatter 
matrix d d

w R ×∈S , such that J(W)=|WTSbW|/|WTSwW| [1,2]. For the situation, the projection 
matrix W is determined by the eigenvectors of 1

w b
−S S  using eigenvalue decomposition (EVD) . 

However, in many pattern classification applications, the matrix wS is singular and the 
projection W can not be directly computed using EVD of 1

w b
−S S . This problem is commonly 

called small size sample (SSS) problem, where the number of sample dimension is larger than 
the number of samples. [3]. Classical LDA cann’t be applied to the SSS problem directly in the 
applications of face recognition, image recognition and so on.  

For the SSS problem, current researches based on LDA mainly can be divided into two 
categories: one is to eliminate the singularity of wS directly, and the other is based on linear 
subspace analysis. The former class technique contains Fisherface[4], Regularized 
LDA(RLDA) [5], Direct Regularized LDA (DRLDA) [6] and Approximate LDA (ALDA) [7]. 
Fisherface firstly reduces dimension of samples using principal component analysis (PCA), 
which makes the total scatter matrix tS  to be full rank, and then applies LDA to obtain optimal 
projection space. However, some important feature information may be discarded in the 
dimensionality reduction of PCA, and it also can not be guaranteed that wS is a non-singular 
matrix. RLDA makes matrix wS  non-singular through adding a regularization term αI to the 
diagonal elements of wS , where 0α >  is regularzation parameter and I is identity matrix, and 
then obtains an optimal projection space by EVD of 1( )w bα −+S I S [8,9]. RLDA eliminates the 
singularity of matrix and retains both the null space and range space of wS . But it has high 
time complexity since the regularization parameter α is evaluated by cross-validation method, 
and the granularity selection for cross-validation is important [10]. And a poor value of α can 
degrade the generalization performance of RLDA[11]. DRLDA calculates regularization 
parameters directly and avoids the cross-validation process of RLDA to improve training 
efficiency [6]. Instead of heuristic methods for estimating the regularization parameters, 
ALDA introduces a reversible approximation matrix to eliminate matrix singularity by 
replacing original eigenvalue matrix of wS . Particularly, ALDA presents better recognition 
accuracy than RLDA and DRLDA and less time complexity than DRLDA [7]. These 
algorithms mentioned above are all based on eliminating the singularity of wS  to solve SSS 
problem directly.  
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The other category technique, which is based on linear subspace analysis,  incorporates 
null space and range space information of wS and bS  respectively. This class technique 
mainly contains the Null LDA(NLDA) [12], Direct LDA(DLDA) [13] and Two Stage 
LDA(TSLDA) [14]. For wS and bS , there are four feature subspaces namely null space of 

wS ( null
wS ), range space of wS ( range

wS ), null space of bS ( null
bS ), range space of bS ( range

bS ). 
NLDA firstly projectes the training samples on the null space of wS , and then finds W in the 

range space of b′S which satisfies 0b′ ≠S W  and maximizes T
b′W S W . DLDA firstly 

transforms the training samples to the range space of bS , and then find W in the range space of 

w′S  by minimizing T
w′W S W . Based on the above analysis, NLDA retains null

wS and range
bS , 

while DLDA contains range
wS and range

bS  [15]. However, all these four individual subspaces may 
have some significant feature information for classification [3].  

TSLDA exploits all the four subspaces null
wS , range

bS , range
wS and null

bS  to constitute the optimal 
projection space W [16-18], and it has been confirmed to own better results in feature 
extraction than NLDA and DLDA[19]. But TSLDA has high time complexity in eliminating 
singular matrix since it determines regularization parameters using cross-validation method. 
Meanwhile, the feature information in these subspaces may not be entirely beneficial for 
classification. Therefore, it is necessary to extract superior feature vectors in the projection 
space of TSLDA to improve the classification performance. 

Face image classification is an important type of SSS problem. Recently, there are many  
researches for face recognition  methods, including singular value decomposition frameworks 
for low resolution image and face-hallucination [20,21], the hierarchical scheme for 
facial-feature detection and localization [22], and the potential-field representation method for 
face-image retrieval [23]. Face feature learning and represetation approaches also have 
develeped rapidly, including the discriminative feature learning approach for deep face 
recognition [24], the structured subspace learning approach [25], and the clustering-guided 
sparse structural learning approach [26]. 

This paper focus on the linear discriminant analysis method to solve the SSS problem. 
The TSLDA method has used all the four subspaces null

wS , range
bS , range

wS and null
bS  to constitute 

the optimal projection space, but it has high time complexity and the full feature information in 
the four subspaces may not be entirely beneficial for classification. In order to address the 
drawbacks of TSLDA, this paper proposes an improved method of TSLDA(Improved 
TSLDA). On the one hand, the Improved TSLDA eliminates the singular matrix wS and 

bS using an approximate matrix method to reduce the time complexity, where it approximately 
computes the inverse of original eigenvalue matrix with a reverse eigenvalue matrix. On the 
other hand, the Improved TSLDA explores a selection and compression method to extract 
superior feature vectors in the four subspaces, where we defines a single Fisher criterion to 
measure the importance of single feature vector. This paper also presents comparative 
experiments on five face recognition databases as ORL, YALE, AR, FERET and CMU-PIE 
and a handwirtten digit database as MNIST to validate the effectiveness of the Improved 
TSLDA. 
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2. Related Work 

Let 1{ , }n
i i it =x , d

i R∈x denote n training samples in a d-dimensional space having class labels 

{1,2,..., }it c∈ ,where c is the number of classes. The dataset 1{ , }n
i i it =x  can be divided into c 

subsets 1 2[ , ,..., ], jd n
c j R ×= ∈X X X X X  where jX belongs to class j and consists of nj 

number of training samples such that 
1

c

j
j

n n
=

=∑ . The within-class scatter matrix d d
w R ×∈S , 

the between-class scatter matrix d d
b R ×∈S  and total scatter matrix d d

t R ×∈S  are respectively 
denoted as: 

                                                  T

1
( )( )

i j

c

w i j i j
j= ∈

= − −∑ ∑
x X

S x m x m                                           (1) 

                                  T

1
( )( )

c

b j j j
j

n
=

= − −∑S m m m m                                              (2) 

            T

1
( )( )

n

t i i
i=

= − −∑S x m x m                                                   (3) 

where 
1

(1 / )
n

i
i

n
=

= ∑m x is the centriod of X , and 
1

(1 / )
i j

c

j j i
j

n
= ∈

= ∑ ∑
x X

m x is the centriod of jX .       

       Classical LDA aims to find a projection space W based on the Fisher criterion such that  
T 1 Targ max{ (( ) )}w btr −=

W
W W S W W S W . To maximize the Fisher criterion, the optimal 

projection space W can be computed by EVD of 1
w b
−S S with the top c-1 eigenvalues 

corresponding to eigenvectors[27,28]. However, it is impossible to obtain the eigenvectors of 
1

w b
−S S directly since the wS is singular in image recognition. 

TSLDA utilizes four subspaces and the optimal projection space can be computed from 
the input samples by carrying out two discriminant analysis in parallel [29]. In the first 
analysis, the projection space 1W is computed by retaining nonzero eigenvalues of 1

w b
−′S S  

corresponding to eigenvectors, where non-singular matrix ′S is the regularization form of S. 
The 1W  includes  null space of wS and range space of bS . In the second analysis, the 
projection space 2W  that is computed by retaining top eigenvalues of 1

b w
−′S S  corresponding 

to eigenvectors, and it includes null space of bS and range space of wS . The projection spaces 
obtained by the two-stage analysis are concatenated to get total projection space 
W ,i.e., [ ]1 2,=W W W . The details of TSLDA are as follows: 

Firstly, singluar matrices wS and bS are regularized to be non-singular matrices w′S  and 

b′S using cross-validation method in determining regularization parameter: 

                                                1w w α′ = +S S I                                                 (4) 
 

           2b b α′ = +S S I                                                  (5) 
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In order to extract the range space of 1
w b
−′S S , TSLDA carries out the EVD of 1

w b
−′S S : 

 

                     1
1 1w b σ−′ =S S E E                                                    (6) 

 

where 1 2( , ,..., ,..., )
br ddiagσ σ σ σ σ= is the diagnonal matrix of eigenvalue that satisfies 

1 2 1... ... 0
b br r dσ σ σ σ σ+> > > > = = = , and ( ) 1b br rank c= = −S . The eigenvector matrix 1E is 

given by: 
                                                              

1 11 [ , ]R N=E E E                                                         (7) 

where 
1

bd r
R R ×∈E and 

1

( )bd d r
N R × −∈E respectively represent range space and null space of 

1
w b
−′S S . Particularly, 

1

bd r
R R ×∈E is the only effective projection space to be reserved, i.e., 

11 R=W E . 

Secondly, TSLDA introduces range space of 1
b w
−′S S  to approximate the null space of 

1
w b
−′S S  [14], and it also carries out EVD of 1

b w
−′S S : 

 

                                                   1
2 2b w δ−′ =S S E E                                                          (8)

   
where 1 2( , ,..., ,..., ,..., )

b wr r ddiagδ δ δ δ δ δ= is the diagnonal matrix of eigenvalue that satisfies 

1 2 1... ... ... 0
b b wr r rδ δ δ δ δ+> > > > > > = =  and ( )w wr rank n c= = −S . The eigenvector matrix 

2E is given by: 
                                                            

2 22 [ , ]R N=E E E                                                           (9) 
 

where 
2

wd r
R R ×∈E and 

2

( )wd d r
N R × −∈E respectively denote range space and null space of 1

b w
−′S S . 

Due to b wr r< , the important discriminant information in 
2

wd r
R R ×∈E  is calculated by the 

top br eigenvalues corresponding to eigenvectors to constitute the effective projection space 

2
bd r

RL R ×= ∈W E . Finally, these two projection spaces are concatenated to get the total 
projection space W: 
            [ ]1 2,=W W W                                                                    (10) 

and 2 bd rR ×∈W . 

3. Improved TSLDA 
3.1 Motivation Analysis 
For the within-class scatter matrix wS and the between-class scatter matrix bS , there are four 
feature subspaces namely null space of wS  ( null

wS ), range space of wS  ( range
wS ), null space of 

bS  ( null
bS ), and range space of  bS ( range

bS ).  Traditional researches show that spaces 
null
wS and range

bS  obtain the main information [12,13]. Moreover, some resent works show that 
the spaces range

wS and null
bS  also can improve the classification accuracy [14,15].  Hence, all 
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these four individual subspaces may have some significant feature information for 
classification.  

TSLDA computes the optimal projection space through the four subspaces by carrying 
out two discriminant analysis in parallel [29]. The first projection space 1W is computed by 
retaining nonzero eigenvalues of 1

w b
−′S S  corresponding to eigenvectors, where non-singular 

matrix ′S is the regularization form of S. The 1W  includes  null space of wS and range space of 

bS . The second projection space 2W  that is computed by retaining top eigenvalues of 1
b w
−′S S  

corresponding to eigenvectors, and it includes null space of bS and range space of wS . 
TSLDA combines the two projection spaces, that is [ ]1 2,=W W W . 

Since TSLDA algorithm determines regularization parameters using cross-validation 
method, and it has high time complexity in eliminating singular matrix. Meanwhile, the full 
feature information in the four subspaces may not be entirely beneficial for classification, and 
it is necessary to extract superior feature vectors in the four projection spaces to improve the 
classification performance. This paper proposes an improved method of Two Stage Linear 
Discriminant Analysis (Improved TSLDA). Improved TSLDA eliminates the singular 
matrices wS and bS  and reduces its time complexity using an approximate matrix method. 
Meanwhile, the Improved TSLDA proposes a selection and compression method to extract 
superior feature vectors from the four projection spaces and compresses original projection 
space.  

 
3.2 Improved TSLDA Algorithm 

The Improved TSLDA firstly reduces dimensionality of all samples to simplify calculation 
using PCA method. Then an approximate matrix method is introduced to estimate the singular 
matrices ˆ

wS and ˆ
bS  and eliminate matrix singularity through approximately computing the 

inverse of original eigenvalue matrix with a reverse eigenvalue matrix. Next, Improved 
TSLDA integrates null space and range space of ˆ

wS and ˆ
bS  to constitute projection space W. 

Finally, we apply selection and compression method to extract superior feature vectors in W to 
obtain optimal projection space optW . The Fig. 1 shows the a schematic diagram of Improved 
TSLDA, and the detailed description of this algorithm is listed as follows: 
 
 
 
 
  
 
 
                                                                              

Fig. 1. Schematic diagram of Improved TSLDA 
 

 
 
 

Face 
databases: 
ORL,YALE,
AR,FERET, 
CMU-PIE 

PCA: 
all samples 

Obtain: 
ˆ ˆ,w bS S  

SVD: ˆ ˆ,w bS S  
Estimate: 

1 1ˆ ˆ,w b
− −′ ′S S   

Optimal 
projection 

space: 
optW  

Preprocess Approximation 
matrix method 

Selection 
method 

Input 
samples 

Projection space 

Range space of 
1ˆ ˆ

b w
−′S S and

1ˆ ˆ
w b
−′S S  
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(1) Pre-processing stage: apply PCA to reduce dimension of all samples. The SVD of total 
scatter matrix tS  is given by: 
                                                  T

t t t= ΣS U U                                                      (11) 

where 
0

,
0 0

t tt r r
t R ×Σ 

Σ = Σ ∈ 
 

 is eigenvalue matrix with the rank 1tr n= − , [ , ]t TR TN=U U U  

is eigenvector matrix of tS , and td r
TR R ×∈U  , ( )td d r

TN R × −∈U  respectively denote range space 
and null space of tS . All samples are projected on TRU and dimensionality is reduced from d to 
rt (d>rt), and the transformed between-class scatter matrix is ˆ t tr r

w R ×∈S  and the transformed 

within-class scatter matrix is ˆ t tr r
b R ×∈S . 

(2) Eliminate singluar matrices: Eliminate the singularity of ˆ ˆ,w bS S using approximation 
matrix method. Due to ˆ( )wrank n c= −S and ˆ( ) 1brank c= −S , the rank relationship of each 
scatter matrix becomes ˆ ˆ ˆ( ) ( ) ( )t w brank rank rank> >S S S . It is obvious that ˆ

wS and ˆ
bS are still 

singular matrices in a rt–dimensional space, hence performs SVD with them as follow: 
 

                                                            Tˆ ˆ ˆ ˆ
w w w w=S U D U                                                          (12) 

 

            Tˆ ˆ ˆ ˆ
b b b b=S U D U                                                            (13) 

 

where ˆ t tr r
w R ×∈U and ˆ t tr r

b R ×∈U are eigenvectors, 
0ˆ

0 0
w

w
 

=  
 

Λ
D  and 

0ˆ
0 0

b
b

 
=  
 

Λ
D  are 

eigenvalues. The inverse computation of ˆ
wS and ˆ

bS are shown as: 
 

                                                            1 1 Tˆ ˆ ˆ ˆ
w w w w
− −=S U D U                                                        (14) 

 

                                                            1 1 Tˆ ˆ ˆ ˆ
b b b b
− −=S U D U                                                         (15) 

 

Since the eigenvalue matrices ˆ
wD and ˆ

bD are singluar and irreversible, let us denote: 
 

                                                            ˆ ˆ
w wα α= −D I D                                                          (16) 

 

where ˆmax( ( ))wdiagα = D , I is identity matrix, and we can substitute 1ˆ
w
−D with the 

nonsingular eigenvalue matrix ˆ
wαD . Thus, 1 1ˆ ˆ,w b

− −′ ′S S are denoted to approximately estimate 
1 1ˆ ˆ,w b
− −S S  and the inverse of ˆ

wS can be given by: 
 

                                                           1 Tˆ ˆ ˆ ˆ
w w w wα
−′ =S U D U                                                        (17) 

The inverse computation of ˆ
bS can be treated in the same manner, 

 

                                                           1 Tˆ ˆ ˆ ˆ
b b b bα
−′ =S U D U                                                         (18) 

 

(3) Analyze projection space: compute and concatenate two projection space to get W. 
Improved TSLDA obtains the feature space 

1 11 [ , ]R N=E E E  of 1ˆ ˆ
w b
−′S S using EVD method and 

selects the range space 
1

t br r
R R ×∈E of 1ˆ ˆ

w b
−′S S as projection space 

11 R=W E . Similarly, the 
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projection space 2
t br r

RL R ×= ∈W E is constituted by the top br eigenvectors in the range 

space
2RE in

2 22 [ , ]R N=E E E  where 2E denotes the eigenvector space of 1ˆ ˆ
b w
−′S S . The projection 

spaces W1 and W2 are concatenated to get the total projection space W: 
 

                                                        [ ]1 2,=W W W                                                            (19) 
 

(4) Selection and compression method: define a single Fisher criterion to measure the 
importance of single feature vector. Under the condition of maximizing single Fisher criterion, 
Improved TSLDA removes the noise information, and extracts superior feature vectors in the 
projection space of TSLDA to get optimal projection space. The single Fisher criterion id is 
defined as: 

                                                
T

T

ˆ
, 1, 2,..., 2ˆ

i b i
i b

i w i

Sd i r
S

⋅ ⋅

⋅ ⋅

= =
W W
W W

                                             (20) 

 

Each feature column vector i⋅W in W is substituted into (20) that will obtain the set of single 
Fisher criterion 1 2 2{ , ,..., }

br
D d d d= . In order to measure the important feature vectors in W, 

the element value in set D is limited to 0id ϕ≥ > , and the favorable elements are selected to 
constitute a new set 1 2{ , ,..., },1 2g bD d d d g r′ = < ≤ . The selected single Fisher criterion 

1 2{ , ,..., }gd d d that corresponds the g-th column vectors in W are retained to constitute optimal 
projection space optW : 

                                           1 2, ,..., ,0 2opt g bg r⋅ ⋅ ⋅ = < ≤ W W W W                                         (21)  
 

where g is defined as optimal projection parameter, and all samples owning maximum class 
separability and best classification performance in this projection space. However, the 
parameter g is various for each database, and the computational cost is much expensive to find 
it by traversing all values. Thus, Improved TSLDA integrates random sampling and key point 
selection methods to find parameter g. The random sampling means the value of di is under 
such constraints φ=0.2a, φ=0.1a and φ=0.05a where a=max(di), and key point selection aims 
to select two key value of φ for φ=1 and φ=0, which respectively represent the boundary of 
projection space W1 and projection space W. Only the projection space with optimal training 
accuracy can be retained as optimal projection space optW , and the pseudo-code description of 
Improved TSLDA is illustrated as Algorithm 1. 
 

3.3 Computational Complexity Analysis 
For Improved TSLDA, the time complexity of each step in Algorithm 1 are respectively 
represented by O(dc), O(dn2), O(n3), O(n3),  O(c), O(dn2), and the final time complexity can be 
estimated as O(dn2). The time complexity of TSLDA can be estimated as O(d2n). ALDA, 
NLDA and Fisherface has the same time complexity for O(dn2). Since ,d n n c>> > , it is 
obvious that 2 2( ) ( )O dn O d n<<  and time complexity of Improved LDA is significantly lower 
than that of TSLDA. Therefore, according to the theoretical derivation above, the proposed 
algorithm has a positive effect in improving classification performance, and it will be 
confirmed in the next experiments. 
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Algorithm 1. An Improved method of Two Stage Linear Discriminant Analysis 

 4. Experimental Results and Analysis 

4.1 Experimental databases  
 In this section, we compare the performances of Improved TSLDA, TSLDA, ALDA, NLDA 
and Fisherface algorithms on five face databases and a handwritten digit database. These face 
recognition databases contain ORL [30], YALE [31], AR [32], FERET [33] and CMU-PIE 
[34], and the handwritten digit database is MNIST [35]. The ORL contains 400 images of 40 

Data: A training dataset 1{ , }n
i i it =x , d

i R∈x , number of class c,  
Result: Optimal projection space optW , class label ti  
Perform iteratively until no test sample. 
1. Calculate scatter matrices :  

within-class scatter matrix: T

1
( )( )

i j

c

w i j i j
j= ∈

= − −∑ ∑
x X

S x m x m ; 

between-class scatter matrix: T

1
( )( )

c

b j j j
j

n
=

= − −∑S m m m m ; 

total scatter matrix: T

1
( )( )

n

t i i
i=

= − −∑S x m x m . 

2.  Pre-processing stage: reduce dimension of all samples using PCA. 
The transformed between-class scatter matrix: Tˆ t tr r

w TR w TR R ×= ∈S U S U . 

The transformed within-class scatter matrix: Tˆ t tr r
b TR b TR R ×= ∈S U S U . 

3. Eliminate singluar matrices ˆ ˆ,w bS S using approximation matrix method. 

SVD with ˆ
wS : Tˆ ˆ ˆ ˆ

w w w w=S U D U , 

SVD with ˆ
bS : Tˆ ˆ ˆ ˆ

b b b b=S U D U .  

Approximation matrix method: substitute ˆ
wD with ˆ ˆ

w wα α= −D I D in ˆ
wS . 

Inverse with ˆ
wS : 1 Tˆ ˆ ˆ ˆ

w w w wα
−′ =S U D U , 

Inverse with ˆ
bS : 1 Tˆ ˆ ˆ ˆ

b b b bα
−′ =S U D U . 

4. Construct projection space W: 
The range space of 1ˆ ˆ

w b
−′S S :

11 R=W E  

The top br eigenvectors in range space of 1ˆ ˆ
b w
−′S S : 2

t br r
RL R ×= ∈W E   

The projection space: [ ]1 2,=W W W . 
5. Selection and compression method:  

Maximize single Fisher criterion:
T

T

ˆ
, 1, 2,..., 2ˆ

i b i
i b

i w i

S
d i r

S
⋅ ⋅

⋅ ⋅

= =
W W
W W

.  

       Limit condition: 1 2{ , ,..., }gd d d satisfying 0id ϕ≥ ≥ .  
       Optimal projection space: 1 2, ,..., ,0 2opt g bg r⋅ ⋅ ⋅ = < ≤ W W W W .    

6. Classification (KNN classifer):  
Projected test samples L

i opt i=x W x  and outputs class label ti . 
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persons having 10 images per class, which are captured under various postures and 
expressions with the front face. The dimension of the original space is 10304. The YALE 
contains 165 images of 15 volunteers having 11 images per class, including changes in 
illuminations, expressions and postures with the front face. The dimension of the original 
space is 6400. The AR contains 2600 images from 126 people with 14 images per individual, 
including different postures and expression in the front face.  We randomly choose 15 people 
with 210 images for experiment. The sample dimension is 4980. The FERET contains 200 
classes with 1400 face images having 7 images per class, including different postures and 
expressions in the front face. We randomly choose 30 people with 210 images for experiment. 
The sample dimension is 6400. The CMU-PIE contains 68 classes 41368 face images under 
various postures, illuminations and expressions with multi-angle face. We choose 
pose09_64x64 dataset in PIE for experiment, which is composed by 24 images per individual 
and 1632 images in total. The sample dimension is 4096. The MNIST contains 10 classes 6000 
handwritten digits with 784 dimension for each digit. We randomly choose 100 samples for 
each class. The detailed information of the databases is shown in Table 1, and some samples 
in six experimental databases are shown in Fig.2. The information of experimental platform 
includes: CPU: Inter(R) Core(TM) i7-3520M CPU@2.90GHz, RAM: 8GB, operating 
system: MAC OS X 10.11, software: MATLAB 2014a. 

The pre-processing stage is applied to all these images firstly where image size is scaled 
down to 65*51. Then Improved TSLDA, TSLDA, ALDA, NLDA and Fisherface are 
respectively conducted to extract sample feature to obtain optimal projection space. Finally, 
the projected samples are classified using k-nearest neighbor classifier. 

 

Table 1. Information of each database 
Database Image size No. samples per class No. Class 

ORL 92*112 10 40 
YALE 80*80 11 15 

AR 40*50 14 15 
FERET 80*80 7 30 

CMU-PIE 64*64 24 68 
MINIST 28*28 100 10 

 

 

  

Fig. 2. Some samples in each experimental database 
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4.2 Parameter Selection 
This section analysizes the selection of optimal projection parameter in Improved TSLDA. We 
give the accuracy of Improved TSLDA with different parameter φ and corresponding optimal 
projection parameter g in the specific number of training samples on six databases.  

First, all samples are cropped and normalized to 65×51 gray images. Then, Improved 
TSLDA is applied to extract sample feature and calculate optimal projection space optW . 
Finally, the projected samples are classified using k-nearest neighbor classifier. The accuracy 
and optimal projection parameter g of Improved TSLDA on each database are respectively 
shown in Table 2 and Table 3. In Table 2, the highest classification accuracies are depicted in 
bold fonts, and Num denotes the number of training samples per class. According to Table 2, 
the corresponding optimal projection parameters g on each database are depicted in bold fonts 
in Table 3.  

 
Table 2. Classification accuracy of Improved TSLDA with different φ on databases (%) 

Database φ=0.2a φ=0.1a φ=0.05a φ=1 φ=0 

ORL(Num=6) 95.00 98.75 98.12 98.12 93.75 
YALE(Num=8) 80.00 95.56 95.56 95.56 93.33 

AR(Num=7) 75.24 79.05 80.00 80.00 85.71 
FERET(Num=4) 84.90 90.50 94.00 89.50 86.90 

CMU-PIE(Num=16) 99.67 99.51 99.51 98.86 96.57 
MNIST(Num=70) 73.92 85.98 94.17 96.87 97.50 

 
Table 3. Optimal projection parameter g of Improved TSLDA on databases  

Database φ=0.2a φ=0.1a φ=0.05a φ=1 φ=0 

ORL(Num=6) 11 25 38 39 78 
YALE(Num=8) 8 14 14 14 28 

AR(Num=7) 8 11 14 14 28 
FERET(Num=4) 9 55 63 193 386 

CMU-PIE(Num=16) 108 128 132 67 134 
MNIST(Num=70) 3 4 8 9 18 

 

The Table 2 shows that the highest classification accuracies of  Improved TSLDA on 
ORL, YALE, AR, FERET, CMU-PIE and MNIST are 98.75% (φ=0.1a,Num=6), 95.56% 
(φ=1,Num=8), 85.71% (φ=0,Num=7), 94.00% (φ=0.05a,Num=4), 99.67% (φ=0.2a,Num=16), 
and 97.50% (φ=0,Num=70) respectively. For ORL, YALE, FERET databases, the accuracy 
increases at first and then decreases as parameter φ constantly closes to zero. For AR and 
MVIST databases, the accuracy shows a trend of constantly increasing as parameter φ 
decreasing. For CMU-PIE database, the accuracy shows a decreasing trend as parameter φ 
decreasing. Since di in set D’ is limited to 0id ϕ≥ ≥ , it is obvious that the optimal projection 
space optW may be a subset of W and is determined by optimal projection parameter g. The 
value of g is further explored and shown in Table 3. 
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The Table 3 shows that the optimal projection parameter g of optW is 25, 14, 28, 63, 108, 18 

for each database. For ORL and FERET, the corresponding optimal projection parameters are 
g=25<39<78 and g=63<193<386 respectively. It demonstrates that optimal projection optW  
only retains partial feature space (discriminant information) in W1 and the remaining feature 
space is discarded as the noise information. The effective discriminant information exists in 
subspace W1. For YALE, optimal projection parameter is g=14=14<28, which means optimal 
projection optW contains all discriminant information in W1 and the W2 is discarded as noise 
information. The effective discriminant information only exists in W1. For CMU-PIE and 
MNIST, the corresponding optimal projection parameter are 67<g=108<134 and 10<g=18<20 
respectively, that indicates optimal projection optW  is constituted by all feature space in W1 
and some feature space in W2. For AR, optimal projection parameter of optW is g=28>14=28 
that means the discriminant information in both W1 and W2 are significant for classification. 

The Fig. 3, 4, 5, 6, 7, 8 further explore optimal projection parameter g, variation trend of 
di  and accuracy with different feature dimension for Improved TSLDA on ORL, YALE, AR, 
FERET, CMU-PIE and MNIST. In Fig. 3(a), 4(a), 5(a), 6(a), 7(a) and 8(a), the horizontal axis 
means the i selected feature W.i in W, and the vertical axis means accuracy for different 
dimension. In Fig. 3(b), 4(b), 5(b), 6(b), 7(b) and 8(b), the horizontal axis means i-th selected 
feature vector W.i in W, and the vertical axis means the corresponding single Fisher criterion 

id . According to above figures, we find that: For ORL, YALE, FERET, CMU-PIE and 
MNIST, the classification accuracy obtained by constantly adding single feature does not 
show a increasing trend until reaching maximum and then slightly decrease on the whole. For 
AR, the classification accuracy has increased to the optimal value by adding single feature 
vector W.i constantly. Besides, the corresponding single Fisher criterion di for all database 
behaves a rapid decline trend to a stable level, and declines rapidly again to zero. 

 

 
                       (a)  Accuracy comparion                           (b) Comparison of single Fisher criterion di 
Fig. 3.  Comparisons of accuracy and di with different feature dimension for Improved TSLDA on ORL 

database (Num=6).  
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                         (a)  Accuracy comparion                           (b) Comparison of single Fisher criterion di 

Fig. 4.  Comparisons of accuracy and di with different feature dimension for Improved TSLDA on 
YALE database (Num=8).  

 
                       (a)  Accuracy comparion                           (b) Comparison of single Fisher criterion di 
Fig. 5.  Comparisons of accuracy and di with different feature dimension for Improved TSLDA on AR 

database (Num=7).  
 

 
                      (a)  Accuracy comparion                           (b) Comparison of single Fisher criterion di 

Fig. 6.  Comparisons of accuracy and di with different feature dimension for Improved TSLDA on 
FERET database (Num=4).  
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                         (a)  Accuracy comparion                             (b) Comparison of single Fisher criterion di 

Fig. 7.  Comparisons of accuracy and di with different feature dimension for Improved TSLDA on 
CMU-PIE database (Num=16).  

 
 

Fig. 8.  Comparisons of accuracy and di with different feature dimension for Improved TSLDA on 
MNIST database (Num=70).  

 
According to these trends, we can draw two conclusions that: ①The discriminant 

information in projection space of TSLDA may not be entirely effectively, and there may be 
some noise information in it. ② The optimal projection space optW is determined by optimal  
projection parameter g. Improved TSLDA can extract superior feature vectors and eliminate 
noise feature information in W. 
 

4.3 Algorithm Comparisons 
This section compares the Improved TSLDA algorithm with TSLDA, ALDA, NLDA and 
Fisherface on the six databases, including ORL, YALE, AR, FERET, CMU-PIE and MNIST. 
We analyze the accuracy and time of each compatitive algorithm. 
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4.3.1 Accuracy Comparisons 
We compare the accuracy of Improved TSLDA with other four algorithm on each database. 
For each class, we utilize Num samples for training and (n*-Num) samples for test on the six 
databases, where Num denotes number of training sample per class and n* is total sample 
number per class. The experimental results are shown in Table 4-9. In Table 4-9, the best 
results are highlighted in bold face font. Besides, the corresponding changing trend of 
accuracy are repectively plotted in  Fig. 9 (a), Fig. 9 (b), Fig. 9 (c), Fig. 9(d), Fig. 9(e) and Fig. 
9(f). In the Fig. 9, the horizontal axis means the number of trainning samples, and the vertical 
axis means classification accuracy for each database. 
 

Table 4. Classification accuracy on ORL with different number of training samples(%) 
Algorithm Num=2 Num=3 Num=4 Num=5 Num=6 Num=7 Num=8 AVG 

Improved 
TSLDA 

88.44 93.21 94.58 97.00 98.75 99.17 100 95.88 

TSLDA 82.81 92.14 93.75 92.50 95.00 95.83 96.25 92.61 
ALDA 88.44 91.43 94.58 97.00 98.12 99.17 100 95.53 
NLDA 87.81 91.07 92.17 95.50 96.88 99.17 98.75 94.48 

Fisherface 83.44 81.43 80.42 69.50 85.62 82.50 93.75 82.38 
 

Table 5. Classification accuracy on YALE with different number of training samples(%) 
Algorithm Num=3 Num=4 Num=5 Num=6 Num=7 Num=8 Num=9 AVG 

Improved 
TSLDA 

78.33 83.81 88.89 85.33 93.33 95.56 90.00 87.89 

TSLDA 75.00 82.86 83.33 80.00 90.00 88.89 93.33 84.77 
ALDA 78.33 83.81 88.89 85.33 93.33 95.56 90.00 87.89 
NLDA 80.00 82.86 82.22 80.00 90.00 84.44 93.33 84.69 

Fisherface 72.50 80.95 81.11 50.67 76.67 66.67 76.67 72.17 
 

Table 6. Classification accuracy on AR with different number of training samples(%) 
Algorithm Num=4 Num=5 Num=6 Num=7 Num=8 Num=9 AVG 

Improved TSLDA 77.33 84.44 86.67 85.71 100 100 89.03 
TSLDA 76.67 82.96 88.33 84.76 100.00 100.00 88.79 
ALDA 75.33 83.70 82.50 80.00 100.00 100.00 86.92 
NLDA 78.00 82.22 87.50 83.81 100.00 100.00 88.59 

Fisherface 79.33 80.74 86.67 84.76 98.89 99.17 88.26 
 

Table 7. Classification accuracy on FERET with different number of training samples(%) 
Algorithm Num=2 Num=3 Num=4 Num=5 AVG 

Improved TSLDA 76.25 84.44 94.00 100.00 88.67 
TSLDA 75.00 73.33 90.00 96.67 83.75 
ALDA 76.25 80.00 93.33 100.00 87.40 
NLDA 68.88 83.33 93.33 93.33 84.72 

Fisherface 61.50 74.44 88.33 100.00 81.07 
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Table 8. Classification accuracy on CMU-PIE with different number of training samples(%) 

Algorithm Num=4 Num=8 Num=12 Num=16 Num=20 AVG 

Improved TSLDA 27.25 67.69 87.50 99.67 100 76.24 
TSLDA 50.66 67.56 84.80 96.88 100 79.98 
ALDA 24.93 63.97 76.84 95.62 100 72.27 
NLDA 33.75 64.34 79.41 97.24 100 74.94 

Fisherface 48.68 67.00 82.23 99.38 100 79.45 
 

Table 9. Classification accuracy on MNIST with different number of training samples(%) 
Algorithm Num=30 Num=40 Num=50 Num=60 Num=70 Num=80 AVG 

Improved 
TSLDA 

87.15 89.42 91.00 95.33 97.50 97.84 93.04 

TSLDA 83.17 88.75 92.17 94.36 95.83 96.25 91.76 
ALDA 82.10 84.18 91.00 93.75 96.17 96.33 90.59 
NLDA 89.24 90.33 90.50 91.33 93.17 93.75 91.39 

Fisherface 69.75 75.33 81.50 85.33 87.50 88.97 81.40 
 
 

According to Table 4-9, we can find that: On ORL, Improved TSLDA has better 
accuracy than other comparative algorithms with various Num and performs the best in seven 
experiments while ALDA performs the best in five experiments. Improved TSLDA owns the 
best classification performance while Fisherface is worst. On YALE, both Improved TSLDA 
and ALDA perform 5 times of the highest accuracy out of all the seven comparative 
experiments. For classification performance, the accuracy relationship can be described as 
Improved TSLDA=ALDA>TSLDA≈NLDA>Fisherface. On AR, the Improved TSLDA owns 
the best accuracy for three experiments while ALDA, NLDA and Fisherface only have one 
time. The classification performance of Improved TSLDA is still the best. On FERET, the 
Improved TSLDA still owns the best accuracy for all comparative experiments. For 
classification performance, we have Improved TSLDA>ALDA>NLDA>TSLDA>Fisherface. 
On CMU-PIE, since the number of training samples are significantly small, the accuracy of all 
comparative algorithms are abnormal and useless. As the Num increasing, the accuracy of 
Improved TSLDA has improved  rapidly and is still higher than TSLDA, ALDA, NLDA and 
Fisherface from Num≥8. For classification performance, we have Improved 
TSLDA>TSLDA≈Fisherface>NLDA>ALDA.  On MNIST,  the Improve TSLDA provides 
the best accuracy for four experiments while ALDA, NLDA, and Fisherface only have one 
time respectively. Improved TSLDA also proposes the best classification performance. The 
average accuracy indicates that Improved TSLDA provides higher accuracy than other 
comparative algorithms on ORL, YALE, AR, FERET, CMU-PIE and MNIST. 
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                           (a)                                                  (b)                                                  (c) 
 

 
                             (d)                                                      (e)                                             (f) 
 

Fig. 9. Classification accuracy with various number of training samples on different databases.   
(a)  Accuracy on ORL. (b) Accuracy on YALE. (c) Accuracy on AR. (d) Accuracy on FERET. 

 (e) Accuracy on CMU-PIE. (f) Accuracy on MNIST. 
 
 

We can draw three conclusions that: ① For ORL, AR, FERET, and MNIST, Improved 
TSLDA owns better accuracy than TSLDA, NLDA, ALDA and Fisherface. It is obvious that 
Improved TSLDA is excellent on classification and its projection space contains more 
effective discrimination information than other comparative algorithms. ②For YALE, since 
the significant information only exit in projection W1, the Improved TSLDA and ALDA have 
the same projection space and accuracy. This demonstrates that the selection and compression 
method of Improved TSLDA not only can retain useful feature and discard noise information 
automatically, but also own the advantage of ALDA. ③ For CMU-PIE, due to small number 
of training samples, the accuracy of all comparative algorithm are abnormal and useless. As 
the Num increasing, the classification performance Improved TSLDA has improved  rapidly 
and is still superior than TSLDA, ALDA, NLDA and Fisherface. 

Based on above analysis, we consider that Improved TSLDA has better classification 
performance than TSLDA, ALDA, NLDA and Fisherface than TSLDA on the above six 
databases. Besides, the number of the best performing experiments and total times are 
decipted in Fig. 10, where the overall performance of Improved TSLDA is best in five 
comparative algorithms.  
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Fig. 10. The number of the best performing experiments on each database 

4.3.2 Time Comparisons 
The paper analyzes the average time of five comparative algorithms in Table 10. It is obvious 
that the Improved TSLDA, ALDA, NLDA and Fisherface have almost the same training time, 
and less training time than TSLDA on each database. These results indicate that the theoretical 
derivation of time complexity in section 3 is accurate. Thus, we consider that the Improved 
TSLDA using an approximate matrix method has eliminated the singular matrix and reduced 
the time complexity of the TSLDA effectively. 
 

Table 10. Training time of each comparative algorithm (s) 
Database Improved 

TSLDA 
TSLDA ALDA NLDA Fisherface 

ORL(Num=6) 1.28 2.89 0.94 0.93 0.98 
YALE(Num=8) 0.60 2.19 0.50 0.55 0.51 

AR(Num=7) 0.63 2.05 0.50 0.52 0.47 
FERET(Num=4) 4.63 10.33 4.60 5.02 3.90 

CMU-PIE(Num=16) 7.63 19.60 6.30 6.89 6.02 
MNIST(Num=7) 1.93 3.11 1.87 1.67 1.72 

Average 2.78 6.70 2.45 2.60 2.27 

4.4 Summary 
The Improved TSLDA applies selection and compression method to extract superior feature 
information from the four subspaces to constitute optimal projection, and uses an 
approximation matrix method to eliminate the singular matrices. For the experiments with 
selection of parameter g, we verify the discriminant information in projection space of TSLDA 
may not be entirely effectively. The selection and compression in Improved TSLDA can 
extract superior feature in the four subspaces to improve classification performance. For 
experiments with algorithm comparisons, it concludes that Improved TSLDA not only retains 
useful feature information and discard noise information in W with less time, but also can 
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select optimal feature extraction method automatically. The experimental results show that 
Improved TSLDA has more excellent classification performance and less time complexity 
with various number of training samples.  

5. Conclusion 
In this paper, we have designed an improved method of TSLDA to solve the SSS problem and 
select effective feature information automatically. First, the Improved TSLDA has introduced 
a selection and compression method to improve classification performance, where it extracts 
superior feature vectors and discards noise information automatically from four subspaces. 
Then, the Improved TSLDA applies an approximate matrix method to eliminate the singular 
matrix wS and bS , and reduce its time complexity. Theoretical analysis and experimental 
results indicate that the Improved TSLDA provides better and more stable classification 
performance and less time complexity. In future work, the paper will focus on: (1) We will 
explore a more efficient method to select optimal projection parameter in minimal 
computational complexity. (2) We will have a further study on geometric meaning of the 
single Fisher criterion and try to introduce the selection and compression method into other 
feature extraction algorithms. 
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