• 제목/요약/키워드: Feature map correlation

검색결과 35건 처리시간 0.032초

시추 및 야외조사 자료의 절취면 투영 분석 시스템 Fracjection (The Fracjection: An analytical system for projected fractures onto rock excavation surface from boreholes and outcrops)

  • 황상기;임유진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1882-1889
    • /
    • 2007
  • Surveying rocks for engineering aims for prediction of geological feature of the construction site. Conventionally, survey information at outcrops and bore holes are projected to the construction sites, such as tunnel and slopes, and rock properties of the sites are predicted by interpretations of specialists. This system, the "Fracjection", aims to assist the specialist for visualization of the projected fractures from borehole and outcrop survey. The Fracjection accepts the BIPS and outcrop survey data to its database and allows plotting them in AutoCad map. The software also reads elevation data from contours of the topographic map and constructs DEM of the construction sites. With user's guide, it generates 3D excavation sites such as slopes and tunnels at the topographic map. The s/w projects borehole and outcrop surveyed fractures onto the modeled excavation surface and allows analysis of failure criteria, such as plane, wedge, and toppling failures by built-in stereonet function. Projected fractures can further be analyzed for structural homogeneities and rock mass quality. Moving window style correlation comparison of stereonet plots are used for formal analyses, and RQD type counts of the projected fractures are adopted for the latter analyses.

  • PDF

Numerical Evaluations of the Effect of Feature Maps on Content-Adaptive Finite Element Mesh Generation

  • Lee, W.H.;Kim, T.S.;Cho, M.H.;Lee, S.Y.
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.8-16
    • /
    • 2007
  • Finite element analysis (FEA) is an effective means for the analysis of bioelectromagnetism. It has been successfully applied to various problems over conventional methods such as boundary element analysis and finite difference analysis. However, its utilization has been limited due to the overwhelming computational load despite of its analytical power. We have previously developed a novel mesh generation scheme that produces FE meshes that are content-adaptive to given MR images. MRI content-adaptive FE meshes (cMeshes) represent the electrically conducting domain more effectively with far less number of nodes and elements, thus lessen the computational load. In general, the cMesh generation is affected by the quality of feature maps derived from MRI. In this study, we have tested various feature maps created based on the improved differential geometry measures for more effective cMesh head models. As performance indices, correlation coefficient (CC), root mean squared error (RMSE), relative error (RE), and the quality of cMesh triangle elements are used. The results show that there is a significant variation according to the characteristics of specific feature maps on cMesh generation, and offer additional choices of feature maps to yield more effective and efficient generation of cMeshes. We believe that cMeshes with specific and improved feature map generation schemes should be useful in the FEA of bioelectromagnetic problems.

Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법 (Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge)

  • 김은경;조현학;이한수;수료 아드히 위보워;김성신
    • 한국지능시스템학회논문지
    • /
    • 제25권5호
    • /
    • pp.502-508
    • /
    • 2015
  • 스테레오 영상은 2-D 영상으로 분석할 수 없는 깊이(거리) 정보를 포함하고 있다. 하지만 연산을 통해서 거리정보를 얻을 수 있기 때문에 계산 값의 신뢰도가 낮고, 폐색된 공간 등의 영향으로 오차가 발생한다. 또한 Stereo Matching 시 Global Method를 사용할 경우, 많은 연산량에 따라 계산 시간이 오래 걸린다. 따라서 본 논문에서는 연산 시간이 짧고 더 높은 정확도를 갖는 Disparity Map을 구하는 방법을 제안한다. 특징 기반 영상분할 기법인 윤곽선 추출을 통해 정확도는 높이고 연산 시간은 줄였다. 컬러 기반 영상 분할 기법인 Color K-Means를 통해 관심 영역을 추출하고, 이를 기반으로 Loopy Belief Propagation(LBP)을 접목하였다. 제안하는 방법을 적용함으로 영상 내 물체들의 연관성을 고려한 보정이 가능하였고, 관심 영역 추출에 따라 연산 시간을 줄일 수 있었다. 실험 결과, 기존의 방법들보다 연산 시간이 짧고 정확도가 높은 Disparity Map을 얻을 수 있었다.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권4호
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석 (Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis)

  • 안상아;이정현;박혁진
    • 지질공학
    • /
    • 제33권4호
    • /
    • pp.673-687
    • /
    • 2023
  • 데이터 탐색은 수집한 데이터를 다양한 각도에서 관찰 및 이해하는 과정으로 데이터 구조 및 특성 분석을 통해 데이터의 분포와 상관관계를 파악하는 과정이다. 일반적으로 산사태는 다양한 인자들에 의해 유발되고 발생 지역에 따라 유발 인자들이 미치는 영향이 상이하기 때문에 산사태 취약성 분석 이전에 데이터 탐색을 통해 유발 인자 사이의 상관관계를 파악하고 특징적인 유발 인자를 선별한다면 효과적인 분석을 수행할 수 있다. 따라서 본 연구는 데이터 탐색이 예측 모델의 성능에 미치는 결과를 확인하기 위해 두 단계에 걸친 데이터 탐색을 수행하여 인자를 선별하고, 선별된 유발 인자들 사이의 조합과 23개의 전체 유발 인자 조합을 활용하여 딥러닝 기반의 산사태 취약성 분석을 진행하였다. 데이터 탐색 과정에서는 Pearson 상관계수 heat map과 random forest의 인자 중요도 histogram을 활용하였으며, 딥러닝 기반 산사태 취약성 분석 결과의 정확도는 분석을 통해 획득한 산사태 취약 지수 값을 이용해 제작한 산사태 취약성 지도를 confusion matrix 기반의 정확도 검증 방법을 통해 분석하였다. 분석 결과, 전체 23개의 인자를 사용한 산사태 취약성 해석 결과는 55.90%의 낮은 정확도를 보였지만 한 단계의 탐색을 거쳐 선별한 13개 인자를 활용한 취약성 해석 결과는 81.25%의 분석 정확도를 보였고, 두 단계 데이터 탐색을 모두 수행하여 선별된 9개의 유발 인자를 활용한 산사태 취약성 분석 결과는 92.80%로 가장 높은 정확도를 보였다. 따라서 데이터 탐색을 통해 특징적인 유발 인자를 선별하고 분석에 활용하는 것이 산사태 취약성 분석에서 더 좋은 분석 성능을 기대할 수 있음을 확인하였다.

스테레오 비전 기반 이동 로봇의 실시간 지도 작성 기법 (Real-Time Mapping of Mobile Robot on Stereo Vision)

  • 한철훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.60-65
    • /
    • 2010
  • 본 논문은 모바일 로봇에 장착된 스테레오 카메라의 영상에서 주변 환경에 대한 지도를 작성하기 위해 특징 검출 및 매칭 그리고 2D 지도 작성의 결과를 기술한다. 영상의 특징을 추출하는 방법은 실시간으로 프로세싱하기 위해서 빠른 연산이 가능한 에지 검출과 차 영상을 이용한 특징을 스테레오 매칭 기법을 통해 상관계수를 구할 수 있다. 이동 로봇의 위치를 추정하기 위해 ZigBee를 이용한 비컨과 로봇에 장착된 엔코더를 칼만 필터를 통해 추정한다. 또한 방위를 측정할 수 있는 자이로 센서를 병합하여 모바일 로봇이 이동하면서 지도를 작성할 수 있게 한다. 이는 이동 로봇의 SLAM 기술과 더불어 지능형 로봇이 인간 생활에서 효과적으로 적용될 수 있는 기반이 될 것이다.

컨벌루션 특징맵과 코릴레이션 필터를 이용한 물체 추적에 관한 연구 (A Study on Object Tracking using Convolution Feature Map and Correlation Filter)

  • 임수창;김도연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.661-662
    • /
    • 2016
  • 컴퓨터비전의 한 분야인 추적은 다양한 방법론들에 근거하여 활발히 연구되어온 분야이다. 추적알고리즘은 연속되는 영상 시퀀스의 객체를 지속적으로 추적하는 방법으로, 객체의 외형 변형, 이동, 회전, 폐색등 복잡한 환경에서도 강건히 추적하는 것에 초점이 맞춰져 있다. 본 논문에서는 딥러닝의 한 부류인 CNN의 컨볼루션 레이어에서 출력되는 특징맵과 변화되는 객체에 적응적으로 대응하는 코릴레이션 필터를 결합하여 복잡한 환경에서도 객체를 추적하는 방법을 제안한다.

이종의 공간 데이터 셋의 면 객체 자동 매칭 방법 (Automated Areal Feature Matching in Different Spatial Data-sets)

  • 김지영;이재빈
    • 대한공간정보학회지
    • /
    • 제24권1호
    • /
    • pp.89-98
    • /
    • 2016
  • 본 연구에서는 축척과 갱신 주기가 상이한 이종의 공간 데이터 셋을 융합하기 위하여 사용자의 개입을 최소화하면서 다대다 관계에도 적용이 가능한 기하학적 방법론 기반의 면 객체 자동 매칭 방법을 제안하였다. 이를 위하여 첫째, 포함함수가 0.4 이상인 객체(노드)는 인접행렬에서 에지로 연결되었고, 이들 인접행렬의 곱을 반복적으로 수행하여 다대다 관계를 포함하는 후보 매칭 쌍을 선정하였다. 다대다 관계인 면 객체들은 알고리즘으로 생성된 convex hull로 단일 면 객체로 변환하였다. 기하학적 매칭을 위하여, 매칭 기준을 설정하고, 이들을 유사도 함수를 이용하여 유사도를 계산하였다. 다음으로 변환된 유사도와 CRITIC 방법으로 도출된 가중치를 선형 조합하여 형상 유사도를 계산하였다. 마지막으로 훈련자료에서 모든 가중치에 대한 정확도와 재현율을 나타낸 PR 곡선의 교차점인 EER로 임계값을 선정하고, 이 임계값을 기준으로 매칭 유무를 판별하였다. 제안된 방법을 수치지도와 도로명 주소기본도에 적용한 결과, 일부 다대다 관계에서 잘못 매칭되는 경우를 시각적으로 확인할 수 있었으나, 통계적 평가에서 정확도, 재현율, F-measure가 각각 0.951, 0.906, 0.928로 높게 나타났다. 이는 제안된 방법으로 이종의 공간 데이터 셋을 자동으로 매칭하는데 그 정확도가 높음을 의미한다. 그러나 일부 오류가 발생한 다대다 관계인 후보 매칭 쌍을 정확하게 정량화하기 위해서 포함함수나 매칭 기준에 대한 연구가 진행되어야 할 것이다.

소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구 (Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis)

  • 강창민;어균선;이건창
    • 경영정보학연구
    • /
    • 제24권1호
    • /
    • pp.1-19
    • /
    • 2022
  • 온라인 사용자들이 소셜 미디어상에 올린 온라인 리뷰 속 숨겨진 감정을 분석하는 감성분석은 소셜미디어의 확산에 힘입어 많은 관심을 받고 있다. 본 연구는 기존 연구들과 차별화된 방법으로 감성분석을 시도하기 위하여 베이지안 네트워크에 기반한 감성 분석 모델을 제안한다. 모델에는 MBFS(Markov Blanket-based Feature Selection)가 속성 선택 기법으로 사용된다. MBFS의 성과를 실증적으로 증명하기 위하여 소셜미디어인 Yelp의 리뷰 데이터를 활용하였다. 벤치마킹 속성 선택 기법으로는 상관관계기반 속성 선택, 정보획득 속성 선택, 획득비율 속성 선택을 사용하였다. 한편, 해당 속성선택방법을 토대로 4개의 머신러닝 알고리즘을 이용하여 분류성과를 비교하였다. 나아가 MBFS로 선택된 속성들 간 인과관계를 확인하고자 베이지안 네트워크를 통해 What-if 분석을 실시하였다. 본 연구에서 택한 머신러닝 분류기는 베이지안 네트워크 기반의 TAN (Tree Augmented Naive Bayes), NB (Naive Bayes), S-Spouses(Sons & Spouses), A-markov (Augmented Markov Blanket)이다. 성과분석 결과 본 연구에서 제안한 MBFS 방법이 정확도, 정밀도, F1점수 측면에서 벤치마킹 방법보다 더 우수한 성과를 나타내었다.

SuperDepthTransfer: Depth Extraction from Image Using Instance-Based Learning with Superpixels

  • Zhu, Yuesheng;Jiang, Yifeng;Huang, Zhuandi;Luo, Guibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4968-4986
    • /
    • 2017
  • In this paper, we primarily address the difficulty of automatic generation of a plausible depth map from a single image in an unstructured environment. The aim is to extrapolate a depth map with a more correct, rich, and distinct depth order, which is both quantitatively accurate as well as visually pleasing. Our technique, which is fundamentally based on a preexisting DepthTransfer algorithm, transfers depth information at the level of superpixels. This occurs within a framework that replaces a pixel basis with one of instance-based learning. A vital superpixels feature enhancing matching precision is posterior incorporation of predictive semantic labels into the depth extraction procedure. Finally, a modified Cross Bilateral Filter is leveraged to augment the final depth field. For training and evaluation, experiments were conducted using the Make3D Range Image Dataset and vividly demonstrate that this depth estimation method outperforms state-of-the-art methods for the correlation coefficient metric, mean log10 error and root mean squared error, and achieves comparable performance for the average relative error metric in both efficacy and computational efficiency. This approach can be utilized to automatically convert 2D images into stereo for 3D visualization, producing anaglyph images that are visually superior in realism and simultaneously more immersive.