• Title/Summary/Keyword: Feature extraction algorithm

Search Result 876, Processing Time 0.031 seconds

Robust Feature Extraction and Tracking Algorithm Using 2-dimensional Wavelet Transform (2차원 웨이브릿 변환을 이용한 강건한 특징점 추출 및 추적 알고리즘)

  • Jang, Sung-Kun;Suk, Jung-Youp
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.405-406
    • /
    • 2007
  • In this paper, we propose feature extraction and tracking algorithm using multi resolution in 2-dimensional wavelet domain. Feature extraction selects feature points using 2-level wavelet transform in interested region. Feature tracking estimates displacement between current frame and next frame based on feature point which is selected feature extraction algorithm. Experimental results show that the proposed algorithm confirmed a better performance than the existing other algorithms.

  • PDF

Optimal Feature Extraction for Multiclass Problems through Proper Choice of Initial Feature Vectors (초기 피춰벡터 설정을 통한 다중클래스 문제에 대한 최적 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.647-650
    • /
    • 1999
  • In this Paper, we propose an optimal feature extraction for multiclass problems through proper choice of initial feature vectors. Although numerous feature extraction algorithms have been proposed, those algorithms are not optimal for multiclass problems. Recently, an optimal feature extraction algorithm for multiclass problems has been proposed, which provides a better performance than the conventional feature extraction algorithms. In this paper, we improve the algorithm by choosing good initial feature vectors. As a result, the searching time is significantly reduced. The chance to be stuck in a local minimum is also reduced.

  • PDF

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity (스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘)

  • Park, Yong-Hee;Kwon, Oh-Seok
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.85-95
    • /
    • 2005
  • This study proposes a method of feature point extraction using scale-space filtering and a feature point tracking algorithm based on a texturedness similarity comparison, With well-defined operators one can select a scale parameter for feature point extraction; this affects the selection and localization of the feature points and also the performance of the tracking algorithm. This study suggests a feature extraction method using scale-space filtering, With a change in the camera's point of view or movement of an object in sequential images, the window of a feature point will have an affine transform. Traditionally, it is difficult to measure the similarity between correspondence points, and tracking errors often occur. This study also suggests a tracking algorithm that expands Shi-Tomasi-Kanade's tracking algorithm with texturedness similarity.

  • PDF

Image Feature Extraction Using Energy field Analysis (에너지장 해석을 통한 영상 특징량 추출 방법 개발)

  • 김면희;이태영;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.404-406
    • /
    • 2002
  • In this paper, the method of image feature extraction is proposed. This method employ the energy field analysis, outlier removal algorithm and ring projection. Using this algorithm, we achieve rotation-translation-scale invariant feature extraction. The force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels. The image feature is acquired from relationship of local extrema using the ring projection method.

  • PDF

UFKLDA: An unsupervised feature extraction algorithm for anomaly detection under cloud environment

  • Wang, GuiPing;Yang, JianXi;Li, Ren
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.684-695
    • /
    • 2019
  • In a cloud environment, performance degradation, or even downtime, of virtual machines (VMs) usually appears gradually along with anomalous states of VMs. To better characterize the state of a VM, all possible performance metrics are collected. For such high-dimensional datasets, this article proposes a feature extraction algorithm based on unsupervised fuzzy linear discriminant analysis with kernel (UFKLDA). By introducing the kernel method, UFKLDA can not only effectively deal with non-Gaussian datasets but also implement nonlinear feature extraction. Two sets of experiments were undertaken. In discriminability experiments, this article introduces quantitative criteria to measure discriminability among all classes of samples. The results show that UFKLDA improves discriminability compared with other popular feature extraction algorithms. In detection accuracy experiments, this article computes accuracy measures of an anomaly detection algorithm (i.e., C-SVM) on the original performance metrics and extracted features. The results show that anomaly detection with features extracted by UFKLDA improves the accuracy of detection in terms of sensitivity and specificity.

Facial Feature Extraction using Genetic Algorithm from Original Image (배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF

Intelligent Feature Extraction and Scoring Algorithm for Classification of Passive Sonar Target (수동 소나 표적의 식별을 위한 지능형 특징정보 추출 및 스코어링 알고리즘)

  • Kim, Hyun-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.629-634
    • /
    • 2009
  • In real-time system application, the feature extraction and scoring algorithm for classification of the passive sonar target has the following problems: it requires an accurate and efficient feature extraction method because it is very difficult to distinguish the features of the propeller shaft rate (PSR) and the blade rate (BR) from the frequency spectrum in real-time, it requires a robust and effective feature scoring method because the classification database (DB) composed of extracted features is noised and incomplete, and further, it requires an easy design procedure in terms of structures and parameters. To solve these problems, an intelligent feature extraction and scoring algorithm using the evolution strategy (ES) and the fuzzy theory is proposed here. To verify the performance of the proposed algorithm, a passive sonar target classification is performed in real-time. Simulation results show that the proposed algorithm effectively solves sonar classification problems in real-time.

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF