• Title/Summary/Keyword: Feature Subset

Search Result 131, Processing Time 0.029 seconds

Classification Performance Improvement of UNSW-NB15 Dataset Based on Feature Selection (특징선택 기법에 기반한 UNSW-NB15 데이터셋의 분류 성능 개선)

  • Lee, Dae-Bum;Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.35-42
    • /
    • 2019
  • Recently, as the Internet and various wearable devices have appeared, Internet technology has contributed to obtaining more convenient information and doing business. However, as the internet is used in various parts, the attack surface points that are exposed to attacks are increasing, Attempts to invade networks aimed at taking unfair advantage, such as cyber terrorism, are also increasing. In this paper, we propose a feature selection method to improve the classification performance of the class to classify the abnormal behavior in the network traffic. The UNSW-NB15 dataset has a rare class imbalance problem with relatively few instances compared to other classes, and an undersampling method is used to eliminate it. We use the SVM, k-NN, and decision tree algorithms and extract a subset of combinations with superior detection accuracy and RMSE through training and verification. The subset has recall values of more than 98% through the wrapper based experiments and the DT_PSO showed the best performance.

AutoFe-Sel: A Meta-learning based methodology for Recommending Feature Subset Selection Algorithms

  • Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1773-1793
    • /
    • 2023
  • Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.

A Feature Selection-based Ensemble Method for Arrhythmia Classification

  • Namsrai, Erdenetuya;Munkhdalai, Tsendsuren;Li, Meijing;Shin, Jung-Hoon;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.

Feature Selection and Performance Analysis using Quantum-inspired Genetic Algorithm (양자 유전알고리즘을 이용한 특징 선택 및 성능 분석)

  • Heo, G.S.;Jeong, H.T.;Park, A.;Baek, S.J.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Feature selection is the important technique of selecting a subset of relevant features for building robust pattern recognition systems. Various methods have been studied for feature selection from sequential search algorithms to stochastic algorithms. In this work, we adopted a Quantum-inspired Genetic Algorithm (QGA) which is based on the concept and principles of quantum computing such as Q-bits and superposition of state for feature selection. The performance of QGA is compared to that of the Conventional Genetic Algorithm (CGA) with respect to the classification rates and the number of selected features. The experimental result using UCI data sets shows that QGA is superior to CGA.

  • PDF

Hepatitis C Stage Classification with hybridization of GA and Chi2 Feature Selection

  • Umar, Rukayya;Adeshina, Steve;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2022
  • In metaheuristic algorithms such as Genetic Algorithm (GA), initial population has a significant impact as it affects the time such algorithm takes to obtain an optimal solution to the given problem. In addition, it may influence the quality of the solution obtained. In the machine learning field, feature selection is an important process to attaining a good performance model; Genetic algorithm has been utilized for this purpose by scientists. However, the characteristics of Genetic algorithm, namely random initial population generation from a vector of feature elements, may influence solution and execution time. In this paper, the use of a statistical algorithm has been introduced (Chi2) for feature relevant checks where p-values of conditional independence were considered. Features with low p-values were discarded and subject relevant subset of features to Genetic Algorithm. This is to gain a level of certainty of the fitness of features randomly selected. An ensembled-based learning model for Hepatitis has been developed for Hepatitis C stage classification. 1385 samples were used using Egyptian-dataset obtained from UCI repository. The comparative evaluation confirms decreased in execution time and an increase in model performance accuracy from 56% to 63%.

Bio-marker Detector and Parkinson's disease diagnosis Approach based on Samples Balanced Genetic Algorithm and Extreme Learning Machine (균형 표본 유전 알고리즘과 극한 기계학습에 기반한 바이오표지자 검출기와 파킨슨 병 진단 접근법)

  • Sachnev, Vasily;Suresh, Sundaram;Choi, YongSoo
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.509-521
    • /
    • 2016
  • A novel Samples Balanced Genetic Algorithm combined with Extreme Learning Machine (SBGA-ELM) for Parkinson's Disease diagnosis and detecting bio-markers is presented in this paper. Proposed approach uses genes' expression data of 22,283 genes from open source ParkDB data base for accurate PD diagnosis and detecting bio-markers. Proposed SBGA-ELM includes two major steps: feature (genes) selection and classification. Feature selection procedure is based on proposed Samples Balanced Genetic Algorithm designed specifically for genes expression data from ParkDB. Proposed SBGA searches a robust subset of genes among 22,283 genes available in ParkDB for further analysis. In the "classification" step chosen set of genes is used to train an Extreme Learning Machine (ELM) classifier for an accurate PD diagnosis. Discovered robust subset of genes creates ELM classifier with stable generalization performance for PD diagnosis. In this research the robust subset of genes is also used to discover 24 bio-markers probably responsible for Parkinson's Disease. Discovered robust subset of genes was verified by using existing PD diagnosis approaches such as SVM and PBL-McRBFN. Both tested methods caused maximum generalization performance.

A Feature Selection Method Based on Fuzzy Cluster Analysis (퍼지 클러스터 분석 기반 특징 선택 방법)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.135-140
    • /
    • 2007
  • Feature selection is a preprocessing technique commonly used on high dimensional data. Feature selection studies how to select a subset or list of attributes that are used to construct models describing data. Feature selection methods attempt to explore data's intrinsic properties by employing statistics or information theory. The recent developments have involved approaches like correlation method, dimensionality reduction and mutual information technique. This feature selection have become the focus of much research in areas of applications with massive and complex data sets. In this paper, we provide a feature selection method considering data characteristics and generalization capability. It provides a computational approach for feature selection based on fuzzy cluster analysis of its attribute values and its performance measures. And we apply it to the system for classifying computer virus and compared with heuristic method using the contrast concept. Experimental result shows the proposed approach can give a feature ranking, select the features, and improve the system performance.

A comparative study of filter methods based on information entropy

  • Kim, Jung-Tae;Kum, Ho-Yeun;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.437-446
    • /
    • 2016
  • Feature selection has become an essential technique to reduce the dimensionality of data sets. Many features are frequently irrelevant or redundant for the classification tasks. The purpose of feature selection is to select relevant features and remove irrelevant and redundant features. Applications of the feature selection range from text processing, face recognition, bioinformatics, speaker verification, and medical diagnosis to financial domains. In this study, we focus on filter methods based on information entropy : IG (Information Gain), FCBF (Fast Correlation Based Filter), and mRMR (minimum Redundancy Maximum Relevance). FCBF has the advantage of reducing computational burden by eliminating the redundant features that satisfy the condition of approximate Markov blanket. However, FCBF considers only the relevance between the feature and the class in order to select the best features, thus failing to take into consideration the interaction between features. In this paper, we propose an improved FCBF to overcome this shortcoming. We also perform a comparative study to evaluate the performance of the proposed method.

CRF Based Intrusion Detection System using Genetic Search Feature Selection for NSSA

  • Azhagiri M;Rajesh A;Rajesh P;Gowtham Sethupathi M
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.131-140
    • /
    • 2023
  • Network security situational awareness systems helps in better managing the security concerns of a network, by monitoring for any anomalies in the network connections and recommending remedial actions upon detecting an attack. An Intrusion Detection System helps in identifying the security concerns of a network, by monitoring for any anomalies in the network connections. We have proposed a CRF based IDS system using genetic search feature selection algorithm for network security situational awareness to detect any anomalies in the network. The conditional random fields being discriminative models are capable of directly modeling the conditional probabilities rather than joint probabilities there by achieving better classification accuracy. The genetic search feature selection algorithm is capable of identifying the optimal subset among the features based on the best population of features associated with the target class. The proposed system, when trained and tested on the bench mark NSL-KDD dataset exhibited higher accuracy in identifying an attack and also classifying the attack category.

An Experimental Study on Feature Subset Selection Methods (특징 선택 방법들의 성능 비교 분석에 대한 연구)

  • Yun, Chul-Min;Yang, Ji-Hoon
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.439-442
    • /
    • 2007
  • 패턴 인식의 성능 향상을 위해 효율적인 특징 선택을 해주는 것은 중요한 과정 중 하나이다. 본 연구에서는 최근에 제시되었던 특징 선택 방법들 중 대표적인 4 가지의 방법을 선택하여 성능을 비교 분석하였다. 데이터의 특징을 줄여주는 기능과 적은 수의 특징으로 더 좋은 패턴 인식 성능을 보여주는 기능의 수행 능력을 중심으로 평가하였으며, 각기 다른 형태의 데이터에 대해 각 방법들이 보이는 성능도 관찰하였다. 이를 토대로 각 방법의 장단점과 특징에 대해 생각해 본다.