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Abstract

Feature selection is the important technique of selecting a subset of relevant features for building robust pattern

recognition systems. Various methods have been studied for feature selection from sequential search algorithms to
stochastic algorithms. In this work, we adopted a Quantum-inspired Genetic Algorithm (QGA) which is based on
the concept and principles of quantum computing such as Q-bits and superposition of state for feature selection.
The performance of QGA is compared to that of the Conventional Genetic Algorithm (CGA) with respect to the
classification rates and the number of selected features. The experimental result using UCI data sets shows that

QGA is superior to CGA.

B keyworld : | Feature Selection | Conventional Genetic Algorithm | Quantum-inspired Genetic Algorithm |

I. Introduction

Feature selection is the problem of selecting a subset of
features from a total of features based on some
optimization criterion. The primary purpose of feature
selection is to design a more compact classifier without
any performance degradation. The reduced number of
features helps to build less computational demanding
applications in the mobile environment.

Since the feature selection is a typical combinatorial
optimization problem, it is essential to develop an
algorithm to efficiently search in a wide range of search

space [1]. Accordingly, many feature selection algorithms

have been studied such as enumeration algorithms,
sequential search algorithms, and genetic algorithms
(GA).

GA which is a stochastic algorithm based on the
principles of natural biological evolution have shown
capabilities in solving optimization problem in various
science and engineering areas [2]. One of the important
issues in GA is a balance between exploration and
exploitation. There are many arguments to control this
balance, but it is very difficult to find appropriate
arguments. Recently, QGA (Quantum-inspired Genetic
Algorithm) was proposed in [3,4], which could handle the
balance between exploration and exploitation more easily

when compared with CGA (Conventional Genetic
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Algorithm).

In this paper, we introduced QGA to solve the feature
selection problem and compared the results with CGA.
The experiments were carried out with UCI data sets and
the performance of QGA and CGA were compared in
terms of classification rates and the number of selected

features.

II. Genetic Algorithms for feature selection

1. Conventional Genetic Algorithm

The structure of CGA can be described as follows.

Conventional Genetic Algorithm

1. 1initialize population P

2. evaluate P;

3. repeat {

5. select two parents p; and p, from P;
6. offspring =  crossover(py,py);

7. mutation(offspring);

8. replace offspring in P,

9. } until (stopping condition);

10. return the best chromosome obtained so far;

Figure 1. Procedure of CGA

For the feature selection, a string which is a
chromosome with D binary digits is used. A binary digit
describes the presence of the corresponding feature. Each
chromosome in the population p(z 20) is evaluated by
Multi-Layer Perceptron (MLP) classifier to give a
measure of its fitness. The presence of input node of MLP
classifier depends on the state of corresponding bits of the
chromosome.

In ‘select’ step, we select two parent chromosomes by
adopting the rank-based roulette-wheel selection scheme.
Then crossover operation generates a new chromosome
(offspring) out of the two parents, and the mutation
operation slightly perturbs the offspring. We used the
standard 2-point crossover and mutation operations with
mutation rate p,), (=0.01).

In ‘replace’ step, if a mutated chromosome is superior to

both parents, it replaces the similar parent; if it is in
between the two parents, it replaces the inferior parent.
Otherwise, the most inferior chromosome in the
population is replaced. Finally, GA stops when the number
of generations reaches the given maximum generation

t(=100).

2. Quantum-inspired Genetic Algorithm

Quantum-inspired Genetic Algorithm (QGA) is a
probabilistic algorithm similar to a genetic algorithm. It is
based on the concept and principles of quantum
computing such as Q-bits and superposition of state, and
exploits Q-bit chromosome as a presentation. The
smallest unit of information stored in two-state quantum
computer is called a quantum bit or Q-bit, which may be
in the 1 state or in the 0O state, or in any superposition of
the two at the same time [5].

The state of a quantum bit can be represented as
|v)=a|0)+ A1) M

where a and (3 are numbers that specify the probability
amplitudes of the corresponding states. |o¢|2 and | 5|2
give the probabilities that the Q-bit will be found in the
0 sate and 1 state, respectively. Normalization of the state

to unity guarantees

lal?+ 1817 =1 2

QGA uses a novel representation that is based on the
concept of Q-bits. One Q-bit is defined with a pair of
numbers (o, ﬂ) A Q-bit chromosome as a string of m
Q-hits is defined as

o, | a, a

Bi| P

m

Bu | 3)

Q-bit representation has the advantage that it is able to
represent a superposition of states. This idea of
superposition makes it possible to represent an
exponential set of state with a small number of Q-bits.
The structure of QGA is described in the following.
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Quantum-—inspired Genetic Algorithm

1.t <0
2. initialize Q(¢);
3. make P(t) by observing Q(t) states;
4. evaluate P(t)§
5. store all solutions in P(¢) into B(t) ;
6. repeat {
7 t —t +1
8 make P(t) by observing Q(t— 1) states;
9 evaluate P(t);
10. update Q(t) using quantum gates U(AB);
11. store the best solutions in B(t) and

P(t) into B(t);
12. store the best solution 6 among B(t);
13. } until (stopping condition);

14. return the best solution é;

Figure 2. Procedure of QGA

QGA maintains a population of Q-bit chromosomes,
Q)= {qﬁ,qé,”-,q;} at generation ¢(= 100), where
n(=20) is the size of population, and q; is a Q-bit

chromosome defined as

t t
c | an| e e
q;, =

Jm

Biv| B | | Bim @

where m is the string length of the Q-bit chromosome.
In the step of ‘initialize Q(t)’, o} and S} of all qz- are
initialized with 1/ \/5 . It means that the first Q-hit
chromosome represents the linear superposition of all

possible states with the same probability.

The next step makes a set of binary solutions
Pt)= {pi,pg,---,pfl} by observing Q(t). One binary

solution pz- is a binary string of length m and is formed

by selecting either 0 or 1 for each bit using the

probability, |0¢§|2 or, |ﬂt ?

;| respectively. For every bit in

the binary string, we generate a random number r from
the range [0,1]; if r > |o¢i | 2 we set the it of the binary
string.

Each binary solution p; is evaluated by MLP classifier
to give a measure of its fitness like in CGA. The best
solution among P(¢) and B(t—1) is then selected and
stored into B(t) = {bﬁ,bg,---,b; }

In the step of ‘update Q(t),’ Q-bit chromosomes in
Q(t) are updated by applying some appropriate quantum
gates U(0), which is formed by using the binary
solutions P(#) and B(t). This Q-gate has the same role

as the crossover and mutation operators of CGA. In this
work, a Q-bit chromosome q;’- is updated by using the

following rotation gate U(8).

B cos(0;) —sin(6;)
U(B"){ sin(0,)  cos(6,) }

®)
Where 6; is a rotation angle of each Q-bit toward either
0 or 1 state depending on its sign. 6, should be designed
in compliance with the application problem. In this
problem, 6, is given as s(aiﬂi)Aﬁi. The parameters
used are shown in Table 1. For example, if f (p) > f ®)
is satisfied p§- and b;- are 1 and 0, respectively, we can set
the value of A@; as 0.0257 and s(a;8;) as +1, -1 or
0 according to the condition of a;3;. The sign s (a;0;)
determines the direction of convergence and A6,

determines the speed of convergence.

Q-Dbit chromosome update:
1.for (4 =1tom )
2. determine #; with the lookup table

3. obtain (a;, ﬁ,) as!

[a;,ﬂ; ]T = U(Hi)[ai B ]T

>

Table 1. Lookup table of 8,
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P\ bl 1) = 1) A6, 20,5,
a8, >0 |, <0, =0| 5, =0

0|0 false 0 0 0 0 0
0]0 true 0 0 0 0 0
01 false 0 0 0 0 0
01 true 0.057 -1 +1 +1 0
1{0 false 0.017 -1 +1 +1 0
110 true 0.0257| +1 -1 0 +1
1|1 false 0.0057 +1 -1 0 +1
1|1 true 0.0257| +1 -1 0 +1

1. Experimental Environment and Result
Analysis

1. Environment
We used 5 data sets from UCI Machine Learning
various real world

Repository [6], which offers

2. Result Analysis

The experimental results are summarized in Table 3.
The table shows the Best, Worst, and Average
performance and the number of selected features with
respect to the data sets and the feature selection methods.

The wusefulness of feature selection can be easily
verified with the experimental result. The performance
with respect to the classification rates and the number of
features in the table shows that the feature selection by
CGA or QGA is superior to non—feature selection without

regarding to the data sets.

Table 3. Comparison of the Non-feature selection and
feature selection by CGA and QGA

FS

NFS
CGA | QGA

classification problems. Table 2 shows the specification of B. | 83.66 | 84.31 | 84.97
the data sets. These data sets possess diverse Performance | W. | 71.90 | 70.59 | 70.59
characteristics in terms of the number of samples, Pima-Indians A. | 7647 | 77.65 | 77.91
features, and classes. All the data was normalized by a Number of 3 4.6 4.6
. ¢ on bef features ) )
inear function before usage. B 19957 | 100 100
Performance | W. | 98.70 | 98.27 | 99.13
Table 2. Data sets used for experiment and MLP structure Segmentation A 19931 | 9948 | 99.65
Number of 19 | 94 | 8
Number of| Number of[Number off MLP
Data set B. | 98.23 | 100 100
samples | features classes | structure
Performance | W. | 92.04 | 96.46 | 96.46
lea*IndlanS 768 8 2 871072 WDBC A. 96.64 98.58 98.78
Segmentation| 2310 19 7 19-10-7 Number of 30 11.6 12.4
features
WDBC 569 30 2 30-10-2 B. | 61.10 | 84.80 | 83.20
Waveform-— Performance | W. | 58.00 | 60.40 | 78.00
, 5000 40 3 40-10-3 i A. | 60.00 | 78.54 | 80.52
Noise -Noise . . . .
Number of
Sonar 208 60 2 60-10-2 features 40 | 214 | 192
B. | 8293 | 95.12 | 95.12
In the experiment, we used three layers MLP classifier. S Performance | W. | 70.73 | 6341 | 6341
onar
.. . A. | 76.10 | 80.49 | 84.39
In the training, the well known error back-propagation
e ~ : Number of 60 | 316 | 34.0
algorithm is used. The number of input nodes is set equal features ) )

to the number of features, and the number of output
nodes is set equal to the number of classes.

We used a five—fold cross validation schema for the
performance evaluation and stop the training when
RMSE, which is evaluated by validation set, undergoes

five consecutive increases.

(NFS: Non-Feature Selection, FS: Feature
Selection, B: Best, W: Worst, A: Average)

When we compare the performance between CGA and
QGA, some tendencies are found. For the case of

Segmentation, WDBC, and Sonar data, QGA’s average
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performance is better than CGA’s although the best
performance of QGA and CGA are identical. The number
of features is smaller than of CGA, but the only exception
is the case of sonar data. The average and best
classification rates of QGA are superior to those of CGA
in every respect for the case of Pima-Indians.

As for the average classification rates, QGA is superior
to CGA for all experimental data. The performance
difference between CGA and QGA is more evident as the
number of features becomes larger. In case of
Pima-Indians data which have 8 features, the difference
between CGA (77.65%) and QGA (77.91%) is only 0.26%.
However, in case of Sonar data which have 60 features,
the difference between CGA (80.48%) and QGA (84.39%)
is 3.9%. Therefore, we could say that the more a data set

has features, the better performance it shows.

IV. Conclusion

QGA is based on the concept and principles of quantum
computing such as Q-bits and superposition of state.
QGA is known to have an excellent ability of global
search due to its diversity caused by the probabilistic
representation, and it could approach better solutions than
CGA’s in a short time.

In this paper, we applied QGA and CGA to compare
them for feature selection. The experimental result using
UCI data sets shows that QGA is superior to CGA in
terms of the classification rates and the number of
features on the average. It means that QGA could be used

as a promising alternative to CGA for feature selection.
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