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특징선택은패턴인식의성능을향상시키기 위해부분집합을 구성하는 중요한 문제다. 특징 선택에는 순차 탐색 알고리즘으

로부터 확률 기반의 유전 알고리즘까지 다양한 접근 방법이 적용 되었다. 본 연구에서는 특징 선택을 위해 양자 비트, 상태의

중첩 등 양자 컴퓨터 개념을 기반으로 하는 양자 기반 유전 알고리즘(QGA: Quantum-inspired Genetic Algorithm)을 적용하

였다. QGA 성능은 전통적인 유전 알고리즘(CGA: Conventional Genetic Algorithm)을 적용한 특징 선택 방법과 분류율 및

평균 특징개수의 비교를통해 이루어졌으며, UCI 데이터를이용한실험결과 QGA를 적용한특징선택방법이 CGA를 적용한

경우에 비해 전반적으로 좋은 성능을 보임을 확인 할 수 있었다.

Feature selection is the important technique of selecting a subset of relevant features for building robust pattern

recognition systems. Various methods have been studied for feature selection from sequential search algorithms to

stochastic algorithms. In this work, we adopted a Quantum-inspired Genetic Algorithm (QGA) which is based on

the concept and principles of quantum computing such as Q-bits and superposition of state for feature selection.

The performance of QGA is compared to that of the Conventional Genetic Algorithm (CGA) with respect to the

classification rates and the number of selected features. The experimental result using UCI data sets shows that

QGA is superior to CGA.
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Ⅰ. Introduction

Feature selection is the problem of selecting a subset of

features from a total of features based on some

optimization criterion. The primary purpose of feature

selection is to design a more compact classifier without

any performance degradation. The reduced number of

features helps to build less computational demanding

applications in the mobile environment.

Since the feature selection is a typical combinatorial

optimization problem, it is essential to develop an

algorithm to efficiently search in a wide range of search

space [1]. Accordingly, many feature selection algorithms

have been studied such as enumeration algorithms,

sequential search algorithms, and genetic algorithms

(GA).

GA which is a stochastic algorithm based on the

principles of natural biological evolution have shown

capabilities in solving optimization problem in various

science and engineering areas [2]. One of the important

issues in GA is a balance between exploration and

exploitation. There are many arguments to control this

balance, but it is very difficult to find appropriate

arguments. Recently, QGA (Quantum-inspired Genetic

Algorithm) was proposed in [3,4], which could handle the

balance between exploration and exploitation more easily

when compared with CGA (Conventional Genetic
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Conventional Genetic Algorithm

1. initialize population  ;

2. evaluate  ;

3. repeat {

5. select two parents  and  from  ;

6. offspring = crossover( ,);

7. mutation(offspring);

8. replace offspring in  ;

9. } until (stopping condition);

10. return the best chromosome obtained so far;

Algorithm).

In this paper, we introduced QGA to solve the feature

selection problem and compared the results with CGA.

The experiments were carried out with UCI data sets and

the performance of QGA and CGA were compared in

terms of classification rates and the number of selected

features.

Ⅱ. Genetic Algorithms for feature selection

1. Conventional Genetic Algorithm

The structure of CGA can be described as follows.

Figure 1. Procedure of CGA

For the feature selection, a string which is a

chromosome with  binary digits is used. A binary digit

describes the presence of the corresponding feature. Each

chromosome in the population   is evaluated by

Multi-Layer Perceptron (MLP) classifier to give a

measure of its fitness. The presence of input node of MLP

classifier depends on the state of corresponding bits of the

chromosome.

In ‘select’ step, we select two parent chromosomes by

adopting the rank-based roulette-wheel selection scheme.

Then crossover operation generates a new chromosome

(offspring) out of the two parents, and the mutation

operation slightly perturbs the offspring. We used the

standard 2-point crossover and mutation operations with

mutation rate   .

In ‘replace’ step, if a mutated chromosome is superior to

both parents, it replaces the similar parent; if it is in

between the two parents, it replaces the inferior parent.

Otherwise, the most inferior chromosome in the

population is replaced. Finally, GA stops when the number

of generations reaches the given maximum generation

 .

2. Quantum-inspired Genetic Algorithm

Quantum-inspired Genetic Algorithm (QGA) is a

probabilistic algorithm similar to a genetic algorithm. It is

based on the concept and principles of quantum

computing such as Q-bits and superposition of state, and

exploits Q-bit chromosome as a presentation. The

smallest unit of information stored in two-state quantum

computer is called a quantum bit or Q-bit, which may be

in the 1 state or in the 0 state, or in any superposition of

the two at the same time [5].

The state of a quantum bit can be represented as

10 bay += (1)

where  and  are numbers that specify the probability

amplitudes of the corresponding states. 
and 

give the probabilities that the Q-bit will be found in the

0 sate and 1 state, respectively. Normalization of the state

to unity guarantees

     (2)

QGA uses a novel representation that is based on the

concept of Q-bits. One Q-bit is defined with a pair of

numbers  . A Q-bit chromosome as a string of 

Q-bits is defined as
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Q-bit representation has the advantage that it is able to

represent a superposition of states. This idea of

superposition makes it possible to represent an

exponential set of state with a small number of Q-bits.

The structure of QGA is described in the following.
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Quantum-inspired Genetic Algorithm

1.  ← 0;

2. initialize ;

3. make  by observing  states;

4. evaluate ;

5. store all solutions in  into  ;

6. repeat {

7.  ←  +1;

8. make  by observing   states;

9. evaluate ;

10. update  using quantum gates ∆ ;

11. store the best solutions in  and

 into ;

12. store the best solution  among ;

13. } until (stopping condition);

14. return the best solution  ;

Figure 2. Procedure of QGA

QGA maintains a population of Q-bit chromosomes,

  
 

 ⋯
  at generation  , where

  is the size of population, and 

is a Q-bit

chromosome defined as
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where  is the string length of the Q-bit chromosome.

In the step of ‘initialize ’, 

and 


of all 


are

initialized with  . It means that the first Q-bit

chromosome represents the linear superposition of all

possible states with the same probability.

The next step makes a set of binary solutions

  
 

 ⋯
  by observing . One binary

solution 

is a binary string of length  and is formed

by selecting either 0 or 1 for each bit using the

probability, 

or, 


respectively. For every bit in

the binary string, we generate a random number  from

the range [0,1]; if   

, we set the bit of the binary

string.

Each binary solution 

is evaluated by MLP classifier

to give a measure of its fitness like in CGA. The best

solution among  and   is then selected and

stored into   
 

 ⋯
 .

In the step of ‘update ,’ Q-bit chromosomes in

 are updated by applying some appropriate quantum

gates , which is formed by using the binary

solutions  and . This Q-gate has the same role

as the crossover and mutation operators of CGA. In this

work, a Q-bit chromosome 

is updated by using the

following rotation gate .
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Where  is a rotation angle of each Q-bit toward either

0 or 1 state depending on its sign.  should be designed

in compliance with the application problem. In this

problem,  is given as ∆. The parameters

used are shown in Table 1. For example, if  ≥ 

is satisfied 

and 


are 1 and 0, respectively, we can set

the value of ∆ as  and   as +1, -1 or

0 according to the condition of . The sign  

determines the direction of convergence and ∆

determines the speed of convergence.

Q-bit chromosome update:

1. for (  = 1 to  )

2. determine  with the lookup table

3. obtain 
′
′as:

4. [ ] [ ]Tiii
T

ii U  ,  )(   , '' baqba =

Table 1. Lookup table of 
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NFS
FS

CGA QGA

Pima-Indians
Performance

B. 83.66 84.31 84.97
W. 71.90 70.59 70.59
A. 76.47 77.65 77.91

Number of 
features 8 4.6 4.6

Segmentation
Performance

B. 99.57 100 100
W. 98.70 98.27 99.13
A 99.31 99.48 99.65

Number of 
features 19 9.4 8

WDBC
Performance

B. 98.23 100 100
W. 92.04 96.46 96.46
A. 96.64 98.58 98.78

Number of 
features 30 11.6 12.4

Waveform
-Noise

Performance
B. 61.10 84.80 83.20
W. 58.00 60.40 78.00
A. 60.00 78.54 80.52

Number of 
features 40 21.4 19.2

Sonar
Performance

B. 82.93 95.12 95.12
W. 70.73 63.41 63.41
A. 76.10 80.49 84.39

Number of 
features 60 31.6 34.0

   ≥  ∆



         

0 0 false 0 0 0 0 0
0 0 true 0 0 0 0 0
0 1 false 0 0 0 0 0
0 1 true 0.05 -1 +1 1± 0
1 0 false 0.01 -1 +1 1± 0
1 0 true 0.025 +1 -1 0 1±
1 1 false 0.005 +1 -1 0 1±
1 1 true 0.025 +1 -1 0 1±

Ⅲ. Experimental Environment and Result

Analysis

1. Environment

We used 5 data sets from UCI Machine Learning

Repository [6], which offers various real world

classification problems. Table 2 shows the specification of

the data sets. These data sets possess diverse

characteristics in terms of the number of samples,

features, and classes. All the data was normalized by a

linear function before usage.

Table 2. Data sets used for experiment and MLP structure

Data set
Number of

samples

Number of

features

Number of

classes

MLP

structure

Pima-Indians 768 8 2 8-10-2

Segmentation 2310 19 7 19-10-7

WDBC 569 30 2 30-10-2

Waveform-

Noise
5000 40 3 40-10-3

Sonar 208 60 2 60-10-2

In the experiment, we used three layers MLP classifier.

In the training, the well known error back-propagation

algorithm is used. The number of input nodes is set equal

to the number of features, and the number of output

nodes is set equal to the number of classes.

We used a five-fold cross validation schema for the

performance evaluation and stop the training when

RMSE, which is evaluated by validation set, undergoes

five consecutive increases.

2. Result Analysis

The experimental results are summarized in Table 3.

The table shows the Best, Worst, and Average

performance and the number of selected features with

respect to the data sets and the feature selection methods.

The usefulness of feature selection can be easily

verified with the experimental result. The performance

with respect to the classification rates and the number of

features in the table shows that the feature selection by

CGA or QGA is superior to non-feature selection without

regarding to the data sets.

Table 3. Comparison of the Non-feature selection and

feature selection by CGA and QGA

(NFS: Non-Feature Selection, FS: Feature 
Selection, B: Best, W: Worst, A: Average)

When we compare the performance between CGA and

QGA, some tendencies are found. For the case of

Segmentation, WDBC, and Sonar data, QGA’s average
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performance is better than CGA’s although the best

performance of QGA and CGA are identical. The number

of features is smaller than of CGA, but the only exception

is the case of sonar data. The average and best

classification rates of QGA are superior to those of CGA

in every respect for the case of Pima-Indians.

As for the average classification rates, QGA is superior

to CGA for all experimental data. The performance

difference between CGA and QGA is more evident as the

number of features becomes larger. In case of

Pima-Indians data which have 8 features, the difference

between CGA (77.65%) and QGA (77.91%) is only 0.26%.

However, in case of Sonar data which have 60 features,

the difference between CGA (80.48%) and QGA (84.39%)

is 3.9%. Therefore, we could say that the more a data set

has features, the better performance it shows.

Ⅳ. Conclusion

QGA is based on the concept and principles of quantum

computing such as Q-bits and superposition of state.

QGA is known to have an excellent ability of global

search due to its diversity caused by the probabilistic

representation, and it could approach better solutions than

CGA’s in a short time.

In this paper, we applied QGA and CGA to compare

them for feature selection. The experimental result using

UCI data sets shows that QGA is superior to CGA in

terms of the classification rates and the number of

features on the average. It means that QGA could be used

as a promising alternative to CGA for feature selection.
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