• 제목/요약/키워드: Feature Points

검색결과 1,126건 처리시간 0.038초

미국 프로농구(NBA)의 플레이오프 진출에 영향을 미치는 주요 변수 예측: 3점과 턴오버 속성을 중심으로 (Prediction of Key Variables Affecting NBA Playoffs Advancement: Focusing on 3 Points and Turnover Features)

  • 안세환;김영민
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.263-286
    • /
    • 2022
  • 본 연구는 웹 크롤링을 이용하여 1990년부터 2022년까지 총 32개년에 해당하는 NBA 통계 정보를 획득하고, 탐색적 데이터 분석을 통해 관심 변수를 관찰하고 관련된 파생변수를 생성한다. 입력 데이터에 대한 정제 과정을 거쳐 무의미한 변수들을 제거하고, 남은 변수에 대한 상관관계 분석, t 검정 및 분산분석을 수행하였다. 관심 변수에 대해 플레이오프 진출/미진출 그룹 간 평균의 차이를 검정하였고, 이를 보완하기 위해 순위를 기준으로 하는 3개 집단(상위/중위/하위) 간 평균 차이를 재확인하였다. 입력 데이터 중 올해 시즌 데이터만을 테스트 세트로 활용하였고, 모델 훈련을 위해서는 훈련 세트와 검증 세트를 분할하여 5-fold 교차검증을 수행하였다. 교차검증 결과와 시험 세트를 이용한 최종 분석 결과를 비교하여 성능 지표에서 차이가 없음을 확인함으로써 과적합 문제를 해결하였다. 원시 데이터의 품질 수준이 높고, 통계적 가정을 만족하기 때문에 적은 수준의 데이터 세트임에도 불구하고 대부분 모델에서 좋은 결과를 나타냈다. 본 연구는 단순히 머신러닝을 이용하여 NBA의 경기 결과를 예측하거나 플레이오프 진출 여부만을 분류하는 것에서 그치지 않고, 입력 특성의 중요도를 파악하여 높은 중요도를 갖는 주요 변수에 본 연구의 관심 대상 변수가 포함되는지를 확인하였다. Shap value의 시각화를 통해 특성 중요도의 결과만으로 해석할 수 없었던 한계를 극복하고, 변수의 진입/제거 과정에서 중요도 산출에 일관성이 부족하다는 점을 보완할 수 있었다. 본 연구에서 관심 대상으로 분류했던 3점 및 실책과 관련된 다수의 변수가 미국 프로농구에서의 플레이오프 진출에 영향을 미치는 주요 변수에 포함되는 것으로 나타났다. 본 연구는 기존의 스포츠 데이터 분석 분야에서 다루었던 경기 결과, 플레이오프 및 우승 예측 등의 주제를 포함하고 분석을 위해 여러 머신러닝 모델을 비교 분석했다는 점에서 유사성이 있지만, 사전에 관심 속성을 설정하고, 이를 통계적으로 검증함으로써 머신러닝 분석 결과와 비교하였다는 측면에서 차이가 있다. 또한 XAI 모델 중 하나인 SHAP를 이용하여 설명 가능한 시각화 결과를 제시함으로써 기존 연구와 차별화하였다.

다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 미치는 영향 연구 (The Effect of Meta-Features of Multiclass Datasets on the Performance of Classification Algorithms)

  • 김정훈;김민용;권오병
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.23-45
    • /
    • 2020
  • 기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.

저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상 (Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images)

  • 이경욱;이예진;박종혁
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.171-187
    • /
    • 2023
  • 저화소의 감시카메라와 같은 촬영 장비를 통해 사람의 얼굴을 인식할 경우, 화질이 낮아 얼굴을 포착하기 어렵다는 문제점이 있다. 이렇게, 사람의 얼굴을 인식하기 어렵다면 범죄용의자나 실종자를 특정해내지 못하는 등의 문제가 발생할 수 있다. 기존 이미지 속 안면 인식에 관한 연구들에서는 정제된 데이터셋을 사용하였기 때문에 다양한 환경에서의 성능을 가늠하기 어렵다는 한계가 존재한다. 이에, 본 논문에서는 저화질 이미지에서 안면 인식 성능이 떨어지는 문제를 해결하기 위해 다양한 환경을 고려한 저화질 안면 이미지에 대해 화질 개선을 수행하여 고화질 이미지를 생성한 뒤, 안면 특징점 검출의 성능 향상시키는 방법을 제안한다. 제안 방법의 현실 적용 가능성을 확인하기 위해 전체 이미지에서 사람이 상대적으로 작게 나타나는 데이터셋을 선정하여 실험을 수행하였다. 또한 마스크 착용 상황을 고려한 안면 이미지 데이터셋을 선정하여, 현실 문제로의 확장 가능성을 탐구하였다. 안면 이미지의 화질을 개선하여 특징점 검출 모델의 성능을 측정한 결과, 개선 후 안면의 검출 여부는 마스크를 착용하지 않은 이미지의 경우 평균 3.47배, 마스크를 착용한 경우 평균 9.92배로 성능 향상을 확인할 수 있었다. 안면 특징점에 대한 RMSE는 마스크를 착용한 이미지의 경우 평균 8.49배 감소, 마스크를 착용하지 않은 경우 평균 2.02배 감소한 것을 확인할 수 있었다. 이에, 화질 개선을 통해 저화질로 포착된 안면 이미지에 대한 인식률을 높여 제안 방법의 활용 가능성을 확인할 수 있었다.

두개주변압통과 관련된 긴장성 두통과 측두하악장애에 기인한 두통과의 RDC/TMD Axis II에 따른 비교 (Comparison of Tension Type Headache Associated with Pericranial Tenderness and Headache Attributed to Temporomandibular Joint Disorder Using RDC/TMD Axis II)

  • 박형윤;배성제;유상훈;전양현;홍정표;어규식
    • Journal of Oral Medicine and Pain
    • /
    • 제35권2호
    • /
    • pp.123-133
    • /
    • 2010
  • 6개월간 경희대학교 치과병원 구강내과에 내원한 환자 중 두개주변압통과 관련된 긴장성 두통으로 진단된 총 48명(남자 11명, 여자 37명)과 측두하악장애에 기인한 두통으로 진단된 총 37명(남자 4명, 여자 33명)을 대상으로 하여 특징적 통증강도, 기능 제한 점수, 만성통증척도, 우울증 정도, 비특이적 신체 증상 등급, 하악기능과 관련된 기능제한에 대한 설문지(RDC/TMD Axis II한글판)를 통한 조사 후 다음과 같은 성적을 얻었다. 1. 특징적 통증 강도는 두개주변압통과 관련된 긴장성 두통 군에서 평균 49.937, 측두하악장애에 기인한 두통 군에서 평균 55.577를 나타냈으나 통계적으로 유의미한 차이는 없었다. 2. 기능 제한 점수는 두개주변압통과 관련된 긴장성 두통 군에서 평균 1.77, 측두하악장애에 기인한 두통 군에서 평균 2.32를 나타냈으나 통계적으로 유의미한 차이는 없었다. 3. 만성통증척도는 두개주변압통과 관련된 긴장성 두통 군에서 평균 2.02, 측두하악장애에 기인한 두통 군에서 평균 2.41를 나타냈으나 통계적으로 유의미한 차이는 없었다. 4. 우울증 정도는 두개주변압통과 관련된 긴장성 두통 군에서 평균 1.150, 측두하악장애에 기인한 두통 군에서 평균 1.049를 나타냈으나 통계적으로 유의미한 차이는 없었다. 5. 통증포함 비특이적 신체 증상 등급은 두개주변압통과 관련된 긴장성 두통 군에서 평균 1.117, 측두하악장애에 기인한 두통 군에서 평균 1.095를 나타냈으나 통계적으로 유의미한 차이는 없었다. 6. 통증비포함 비특이적 신체 증상 등급은 두개주변압통과 관련된 긴장성 두통 군에서 평균 0.939, 측두하악장애에 기인한 두통 군에서 평균 0.946을 나타냈으나 통계적으로 유의미한 차이는 없었다. 7. 하악기능과 관련된 기능제한은 두개주변압통과 관련된 긴장성 두통 군에서 평균 0.377, 측두하악장애에 기인한 두통 군에서 평균 0.387을 나타냈으나 통계적으로 유의미한 차이는 없었다. 두개주변압통과 관련된 긴장성 두통군과 측두하악장애에 기인한 두통군의 비교시 집단에 따른 척도점수의 평균에는 두 집단 사이에는 통계적으로 유사함이 관찰되었다. 이는 두개주변압통과 관련된 긴장성 두통과 측두하악장애에 기인한 두통이 임상적으로 유사한 축 II (Axis II)양상을 보인다는 것을 의미하며, 긴장성 두통의 일부분은 측두하악장애와 관련이 있다고 추론된다. 향후 긴장성 두통 진단시 측두하악장애에 대한 접근이 요구된다고 하겠다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구 (Implementation of Intelligent Image Surveillance System based Context)

  • 문성룡;신성
    • 대한전자공학회논문지SP
    • /
    • 제47권3호
    • /
    • pp.11-22
    • /
    • 2010
  • 본 논문은 컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구로써 기존 연구의 시공간적 제약성 및 실시간 처리가 어려운 단점을 보완하여 초당 30 프레임으로 이루어져 있는 저해상도 동영상(320*240)을 대상으로 다양한 환경에서 실시간 처리가 가능한 움직임 검출 및 장면 분석 알고리즘을 제안하고 이를 이용해 동영상 감시 시스템을 구축한다. 먼저 장면 분석을 수행하기 위한 전처리 과정인 움직임 검출 알고리즘에서는 연속된 프레임 중 의미 없는 유사 프레임과 배경을 제거하고 움직임 영역만을 검출하기 위해 웨이브렛 변환과 에지 히스토그램을 이용하여 샷의 경계를 검출한다. 다음으로 키프레임 선정 파라미터에 의해 샷 경계 내 대표 키프레임을 선정하며, 에지 히스토그램 및 수학적 형태론을 이용하여 움직임 영역만을 검출한다. 장면 분석 알고리즘에서는 검출된 객체의 수직 수평 비율과 질량 중심을 통해 재구성된 허프 변환 후의 각도를 이용해 독립 객체 분석을 수행하며, '서다, 걷다, 눕다, 앉다'의 4가지 기본 상황 정보를 정의한다. 또한 각 상황의 연결 상태 추정을 통해 일반 상황 및 위급 상황으로 구성되는 단순 상황 모델을 정의함으로써 장면 분석을 수행하며, 제안된 알고리즘의 실시간 처리 가능성을 확인하기 위해 시스템을 구성한다. 제안된 시스템은 저해상도 영상을 대상으로 인식률 면에서 평균 92.5%의 성능을 보였으며, 처리속도는 프레임 당 평균 0.74초로 실시간 처리가 가능함을 확인하였다.

재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구 (A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring)

  • 주영도
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.143-149
    • /
    • 2018
  • 최근 전 지구적인 기후변화에 따른 자연재해 피해의 대규모화로 인하여 재해 모니터링과 방재 등 재난재해 분야에서 원격탐사 기술을 적용한 시스템이 구축되고 있다. 다양한 원격탐사 플랫폼 중 드론은 기술의 확산 발전으로 민간분야에서도 활발하게 활용되고 있으며, 적시성, 경제성 등의 장점으로 재난재해 분야에서의 적용이 증대되고 있다. 본 논문은 이러한 드론 기반의 재난재해 모니터링 시스템 구축의 요소 기술인, 준 실시간으로 드론 영상자료를 매핑할 수 있는 전처리 시스템 개발에 관한 것이다. 연구를 위해 컴퓨터 비전 기술 중 SURF 알고리즘을 기반으로 레퍼런스 영상과 촬영 영상 간 특징점 매칭을 통해 보정하는 시스템을 구축하였다. 연구 대상 지역은 가화강 하류 지역과 대청댐 유역으로 선정하였으며, 두 지역은 매칭을 위한 특징점이 많고 적음의 차이가 뚜렷하여 다양한 환경에서 시스템 적용 가능성을 위한 실험에 적합하다. 연구결과 두 지역의 기하보정 정확도가 0.6m와 1.7m로 각각 나타났으며 처리시간 또한 1장당 30초 내외로 나타났다. 이는 적시성을 요하는 재난재해 분야에서 본 연구의 적용 가능성이 높음을 시사한다. 그러나 레퍼런스 영상이 없거나 정확도가 낮은 경우는 보정 결과가 떨어지는 한계점이 있다.

스마트폰 산업에서의 기술혁신관리 프로세스 사례 연구 (A Case Study on the Technology and Innovation Management Process in Smartphone Industry)

  • 박세영;김병근
    • 기술혁신학회지
    • /
    • 제21권1호
    • /
    • pp.92-129
    • /
    • 2018
  • 일반적으로 기술혁신전략이 먼저 수립되고 이를 바탕으로 기술혁신활동이 수행된다. 기존 기술혁신관리 프로세스 연구에서는 기술혁신활동이 순차적 혹은 비선형적으로 존재하거나 선형성을 나타내지만, 특정 기술혁신활동이 특정 시점에 나타나고 없어질 수 있다고 주장한다. 본 연구는 휴대폰 시장이 피처폰 중심에서 스마트폰 중심으로 재편된 최근 10년간 상황에서 스마트폰 산업을 대상으로 기술혁신활동의 실행패턴이 어떻게 진행되는지 분석하고, 이러한 실행패턴과 기술혁신전략이 어떠한 맥락에서 동작하는지 규명한다. 실증분석결과, 기술혁신활동은 기술혁신전략에 따라 시작 시점이 다르고, 다층적 기술혁신활동의 형태로 나타난다는 것을 확인했다. 기술혁신활동은 일정한 패턴이 존재하지만, 외부환경 변화로 기술혁신전략의 변화가 생겼을 경우에는 기술혁신활동의 단계에 대한 중요도가 달라져 앞선 기술혁신활동이 생략된다는 것을 확인했다. 혁신자 전략을 추구하는 기업이 빠른 외부환경 변화에 적응하지 못하고 미흡한 기술혁신활동을 했을 경우 기술혁신전략의 변경을 요구받게 되고 이것은 기업의 생존에 막대한 영향을 끼친다는 것을 확인했다.

VLBI 안테나와 모바일폰 카메라를 활용한 근접수치사진측량의 캘리브레이션 초기값 결정에 따른 3차원 정확도 분석 (Analysis of 3D Accuracy According to Determination of Calibration Initial Value in Close-Range Digital Photogrammetry Using VLBI Antenna and Mobile Phone Camera)

  • 김혁길;윤홍식;조재명
    • 한국측량학회지
    • /
    • 제33권1호
    • /
    • pp.31-43
    • /
    • 2015
  • 본 논문에서는 세종시 우주측지관측센터에 위치한 VLBI 안테나를 대상으로 모바일폰 카메라의 캘리브레이션을 수행하고, 촬영된 스테레오 영상으로부터 3차원 위치좌표를 산출하였다. 모바일폰에 탑재된 카메라의 캘리브레이션을 위한 초기값으로 DLT방법과 상용 수치사진측량시스템인 PhotoModeler $Scanner^{(R)}$ ver. 6.0을 활용하였다. DLT와 PhotoModeler방법으로 산출한 표정결과를 초기값으로 사용하여 광속조정을 통해 카메라 내 외부 표정요소를 계산하고, 두 결과의 정확도를 비교하였다. 두 가지 방법으로 산출한 표정결과는 상당한 편차가 발생하지만, 비선형의 공선조건식을 이용한 광속조정계산으로 두 가지 방법의 최종 표정결과가 거의 일치함을 알 수 있었다. 또한, 두 가지 방법으로 결정된 카메라 내 외부 표정요소들을 이용하여 VLBI 안테나 특징점에 대한 3차원 좌표를 계산하고 토탈스테이션을 통해 측정된 기준좌표들과 비교하였다. 그 결과, 두 가지 방법 모두 표준편차가 $X=0.004{\pm}0.010m$, $Y=0.001{\pm}0.015m$, $Z=0.009{\pm}0.017m$로서, cm급의 높은 정확도를 나타내었다. 이러한 결과를 통해 정밀 사진측량의 목적이 아닌 허용오차의 범위가 상대적으로 큰 다양한 사진측량 분야에 모바일폰 카메라를 활용할 수 있을 것이라 판단된다.

3차원 얼굴 모델링과 예측 시스템 (A Three-Dimensional Facial Modeling and Prediction System)

  • 구본관;정철희;조선영;이명원
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권1호
    • /
    • pp.9-16
    • /
    • 2011
  • 본논문에서는 3차원 3D 얼굴 스캔 데이터와 사진 이미지를 이용하여 3D 얼굴 모델을 생성하고 향후의 얼굴을 예측하는 시스템 개발에 대해 기술한다. 본 시스템은 3차원 텍스처매핑, 얼굴 정의 파라미터 입력 도구, 3차원 예측 알고리즘으로 구성 되어 있다. 3차원 텍스처매핑 기능에서는 3D 스캐너로 획득한 얼굴 모델과 사진 이미지를 이용하여 특정 연령에서의 새로운 얼굴모델을 생성한다. 텍스처매핑은 3D 스캐너로부터 획득한 메쉬 데이터에 정면과 좌우 측면의 세 방향의 사진 이미지를 이용하여 매핑하였다. 얼굴 정의 파라미터 입력도구는 3차원 텍스처매핑에 필요한 사용자 인터페이스 도구로서, 얼굴 모델의 정확한 재질값을 얼굴 사진으로부터 얻기 워하여 사진과 3D 얼굴 모델의 특징점을 일치시키는데 사용된다. 본 연구에서는 한 얼굴의 향후 연령대에서의 얼굴 모델을 구하기 위하여 100여개의 얼굴 스캔 데이터베이스를 이용한 통계적 분석에 의해 재질값을 예측 계산하여 해상도 높은 재질값을 가지는 모든 연령대의 3D 얼굴모델을 구성하였다.