• Title/Summary/Keyword: Feature Image Matching

Search Result 550, Processing Time 0.084 seconds

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

Improved Image Matching Method Based on Affine Transformation Using Nadir and Oblique-Looking Drone Imagery

  • Jang, Hyo Seon;Kim, Sang Kyun;Lee, Ji Sang;Yoo, Su Hong;Hong, Seung Hwan;Kim, Mi Kyeong;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.477-486
    • /
    • 2020
  • Drone has been widely used for many applications ranging from amateur and leisure to professionals to get fast and accurate 3-D information of the surface of the interest. Most of commercial softwares developed for this purpose are performing automatic matching based on SIFT (Scale Invariant Feature Transform) or SURF (Speeded-Up Robust Features) using nadir-looking stereo image sets. Since, there are some situations where not only nadir and nadir-looking matching, but also nadir and oblique-looking matching is needed, the existing software for the latter case could not get good results. In this study, a matching experiment was performed to utilize images with differences in geometry. Nadir and oblique-looking images were acquired through drone for a total of 2 times. SIFT, SURF, which are feature point-based, and IMAS (Image Matching by Affine Simulation) matching techniques based on affine transformation were applied. The experiment was classified according to the identity of the geometry, and the presence or absence of a building was considered. Images with the same geometry could be matched through three matching techniques. However, for image sets with different geometry, only the IMAS method was successful with and without building areas. It was found that when performing matching for use of images with different geometry, the affine transformation-based matching technique should be applied.

Self-Localization of Autonomous Mobile Robot using Multiple Landmarks (다중 표식을 이용한 자율이동로봇의 자기위치측정)

  • 강현덕;조강현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.81-86
    • /
    • 2004
  • This paper describes self-localization of a mobile robot from the multiple candidates of landmarks in outdoor environment. Our robot uses omnidirectional vision system for efficient self-localization. This vision system acquires the visible information of all direction views. The robot uses feature of landmarks whose size is bigger than that of others in image such as building, sculptures, placard etc. Robot uses vertical edges and those merged regions as the feature. In our previous work, we found the problem that landmark matching is difficult when selected candidates of landmarks belonging to region of repeating the vertical edges in image. To overcome these problems, robot uses the merged region of vertical edges. If interval of vertical edges is short then robot bundles them regarding as the same region. Thus, these features are selected as candidates of landmarks. Therefore, the extracted merged region of vertical edge reduces the ambiguity of landmark matching. Robot compares with the candidates of landmark between previous and current image. Then, robot is able to find the same landmark between image sequences using the proposed feature and method. We achieved the efficient self-localization result using robust landmark matching method through the experiments implemented in our campus.

A flexible Feature Matching for Automatic Face and Facial Feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.705-711
    • /
    • 2003
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in !be image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the face identification system.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

Nonlinear Optimization Method for Multiple Image Registration (다수의 영상 특징점 정합을 위한 비선형 최적화 기법)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.634-639
    • /
    • 2012
  • In this paper, we propose nonlinear optimization method for feature matching from multiple view image. Typical solution of feature matching is by solving linear equation. However this solution has large error due to nonlinearity of image formation model. If typical nonlinear optimization method is used, complexity grows exponentially over the number of features. To make complexity lower, we use sparse Levenberg-Marquardt nonlinear optimization for matching of features over multiple view image.

Integrated SIFT Algorithm with Feature Point Matching Filter for Relative Position Estimation (특징점 정합 필터 결합 SIFT를 이용한 상대 위치 추정)

  • Gwak, Min-Gyu;Sung, Sang-Kyung;Yun, Suk-Chang;Won, Dae-Hee;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.759-766
    • /
    • 2009
  • The purpose of this paper is an image processing algorithm development as a base research achieving performance enhancement of integrated navigation system. We used the SIFT (Scale Invariant Feature Transform) algorithm for image processing, and developed feature point matching filter for rejecting mismatched points. By applying the proposed algorithm, it is obtained better result than other methods of parameter tuning and KLT based feature point tracking. For further study, integration with INS and algorithm optimization for the real-time implementation are under investigation.

A Flexible Feature Matching for Automatic Facial Feature Points Detection (얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • Hwang, Suen-Ki;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.12-17
    • /
    • 2010
  • An automatic facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features and the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image space by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the system.

  • PDF

A Flexible Feature Matching for Automatic face and Facial feature Points Detection (얼굴과 얼굴 특징점 자동 검출을 위한 탄력적 특징 정합)

  • 박호식;손형경;정연길;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.608-612
    • /
    • 2002
  • An automatic face and facial feature points(FFPs) detection system is proposed. A face is represented as a graph where the nodes are placed at facial feature points(FFPs) labeled by their Gabor features md the edges are describes their spatial relations. An innovative flexible feature matching is proposed to perform features correspondence between models and the input image. This matching model works likes random diffusion process in the image spare by employing the locally competitive and globally corporative mechanism. The system works nicely on the face images under complicated background, pose variations and distorted by facial accessories. We demonstrate the benefits of our approach by its implementation on the fare identification system.

  • PDF

Improved Feature Descriptor Extraction and Matching Method for Efficient Image Stitching on Mobile Environment (모바일 환경에서 효율적인 영상 정합을 위한 향상된 특징점 기술자 추출 및 정합 기법)

  • Park, Jin-Yang;Ahn, Hyo Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, the mobile industries grow up rapidly and their performances are improved. So the usage of mobile devices is increasing in our life. Also mobile devices equipped with a high-performance camera, so the image stitching can carry out on the mobile devices instead of the desktop. However the mobile devices have limited hardware to perform the image stitching which has a lot of computational complexity. In this paper, we have proposed improved feature descriptor extraction and matching method for efficient image stitching on mobile environment. Our method can reduce computational complexity using extension of orientation window and reduction of dimension feature descriptor when feature descriptor is generated. In addition, the computational complexity of image stitching is reduced through the classification of matching points. In our results, our method makes to improve the computational time of image stitching than the previous method. Therefore our method is suitable for the mobile environment and also that method can make natural-looking stitched image.