• Title/Summary/Keyword: Feature Generation Method

Search Result 289, Processing Time 0.027 seconds

An OTP(One Time Password) Key Generation Method and Simulation using Homomorphic Graph by the Fingerprint Features (지문 특징의 준동형 그래프를 이용한 일회용 암호키 생성기법 및 시뮬레이션)

  • Cha, Byung-Rae
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.447-454
    • /
    • 2008
  • In this paper, we propose new technique which uses the fingerprint features in order to generate one time passwords(OTPs). Fingerprint is considered to be one of the powerful personal authentication factors and it can be used for generating variable passwords for one time use. Also we performed a simulation of homomorphic graph variable of fingerprint feature point using dendrogram and distribution of fingerprint feature points for proposed password generation method.

Low Sit Rate Image Coding using Neural Network (신경망을 이용한 저비트율 영상코딩)

  • 정연길;최승규;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.579-582
    • /
    • 2001
  • Vector Transformation is a new method unified vector quantization and coding. So far, codebook generation applied to coding was LBG algorithm. But using the advantage of SOFM(Self-Organizing Feature Map) based on neural network can improve a system's performance. In this paper, we generated VTC(Vector Transformation Coding) codebook applied with SOFM algorithm and compare the result for several coding rates with LBG algorithm. The problem of Vector quantization is complicated calculation and codebook generation. So, to solve this problem, we used neural network approach method.

  • PDF

A Simplification Method for Feature-based Solid Models (특징형상기반 솔리드 모델의 간략화 방법에 관한 연구)

  • Son, Tae-Geun;Sheen, Dong-Pyoung;Myung, Dae-Kwang;Ryu, Cheol-Ho;Lee, Sang-Hun;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.243-252
    • /
    • 2010
  • This paper describes a new practical simplification method for feature-based solid models. In this approach, a solid model created using feature modeling operations is first simplified by the suppression of detailed features, and then, if necessary, the model is converted to a surface model to facilitate its modification. Finally, the simplified surface model is delivered to analysis packages. The algorithm was implemented based on CATIA V.5 and applied to mid-surface generation of plastic parts for structural analysis to prove the validity and usefulness.

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.

Fast VQ Codebook Design by Sucessively Bisectioning of Principle Axis (주축의 연속적 분할을 통한 고속 벡터 양자화 코드북 설계)

  • Kang, Dae-Seong;Seo, Seok-Bae;Kim, Dai-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.422-431
    • /
    • 2000
  • This paper proposes a new codebook generation method, called a PCA-Based VQ, that incorporates the PCA (Principal Component Analysis) technique into VQ (Vector Quantization) codebook design. The PCA technique reduces the data dimensions by transforming input image vectors into the feature vectors. The cluster of feature vectors in the transformed domain is bisectioned into two subclusters by an optimally chosen partitioning hyperplane. We expedite the searching of the optimal partitioning hyperplane that is the most time consuming process by considering that (1) the optimal partitioning hyperplane is perpendicular to the first principal axis of the feature vectors, (2) it is located on the equilibrium point of the left and right cluster's distortions, and (3) the left and right cluster's distortions can be adjusted incrementally. This principal axis bisectioning is successively performed on the cluster whose difference of distortion between before and after bisection is the maximum among the existing clusters until the total distortion of clusters becomes as small as the desired level. Simulation results show that the proposed PCA-based VQ method is promising because its reconstruction performance is as good as that of the SOFM (Self-Organizing Feature Maps) method and its codebook generation is as fast as that of the K-means method.

  • PDF

Generating Radiology Reports via Multi-feature Optimization Transformer

  • Rui Wang;Rong Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2768-2787
    • /
    • 2023
  • As an important research direction of the application of computer science in the medical field, the automatic generation technology of radiology report has attracted wide attention in the academic community. Because the proportion of normal regions in radiology images is much larger than that of abnormal regions, words describing diseases are often masked by other words, resulting in significant feature loss during the calculation process, which affects the quality of generated reports. In addition, the huge difference between visual features and semantic features causes traditional multi-modal fusion method to fail to generate long narrative structures consisting of multiple sentences, which are required for medical reports. To address these challenges, we propose a multi-feature optimization Transformer (MFOT) for generating radiology reports. In detail, a multi-dimensional mapping attention (MDMA) module is designed to encode the visual grid features from different dimensions to reduce the loss of primary features in the encoding process; a feature pre-fusion (FP) module is constructed to enhance the interaction ability between multi-modal features, so as to generate a reasonably structured radiology report; a detail enhanced attention (DEA) module is proposed to enhance the extraction and utilization of key features and reduce the loss of key features. In conclusion, we evaluate the performance of our proposed model against prevailing mainstream models by utilizing widely-recognized radiology report datasets, namely IU X-Ray and MIMIC-CXR. The experimental outcomes demonstrate that our model achieves SOTA performance on both datasets, compared with the base model, the average improvement of six key indicators is 19.9% and 18.0% respectively. These findings substantiate the efficacy of our model in the domain of automated radiology report generation.

Facial Feature Based Image-to-Image Translation Method

  • Kang, Shinjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4835-4848
    • /
    • 2020
  • The recent expansion of the digital content market is increasing the technical demand for various facial image transformations within the virtual environment. The recent image translation technology enables changes between various domains. However, current image-to-image translation techniques do not provide stable performance through unsupervised learning, especially for shape learning in the face transition field. This is because the face is a highly sensitive feature, and the quality of the resulting image is significantly affected, especially if the transitions in the eyes, nose, and mouth are not effectively performed. We herein propose a new unsupervised method that can transform an in-wild face image into another face style through radical transformation. Specifically, the proposed method applies two face-specific feature loss functions for a generative adversarial network. The proposed technique shows that stable domain conversion to other domains is possible while maintaining the image characteristics in the eyes, nose, and mouth.

A Study on Human Training System for Prosthetic Arm Control (의수제어를 위한 인체학습시스템에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.465-474
    • /
    • 1994
  • This study is concerned with a method which helps human to generate EMG signals accurately and consistently to make reliable design samples of function discriminator for prosthetic arm control. We intend to ensure a signal accuracy and consistency by training human as a signal generation source. For the purposes, we construct a human training system using a digital computer, which generates visual graphes to compare real target motion trajectory with the desired one, to observe EMG signals and their features. To evaluate the effect which affects a feature variance and a feature separability between motion classes by the human training system, we select 4 features such as integral absolute value, zero crossing counts, AR coefficients and LPC cepstrum coefficients. We perform a experiment four times during 2 months. The experimental results show that the hu- man training system is effective for accurate and consistent EMG signal generation and reduction of a feature variance, but is not correlated for a feature separability, The cepstrum coefficient is the most preferable among the used features for reduction of variance, class separability and robustness to a time varing property of EMG signals.

  • PDF

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Map Alignment Method in Monocular SLAM based on Point-Line Feature (특징점과 특징선을 활용한 단안 카메라 SLAM에서의 지도 병합 방법)

  • Back, Mu Hyun;Lee, Jin Kyu;Moon, Ji Won;Hwang, Sung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.127-134
    • /
    • 2020
  • In this paper, we propose a map alignment method for maps generated by point-line monocular SLAM. In the proposed method, the information of feature lines as well as feature points extracted from multiple maps are fused into a single map. To this end, the proposed method first searches for similar areas between maps via Bag-of-Words-based image matching. Thereafter, it calculates the similarity transformation between the maps in the corresponding areas to align the maps. Finally, we merge the overlapped information of multiple maps into a single map by removing duplicate information from similar areas. Experimental results show that maps created by different users are combined into a single map, and the accuracy of the fused map is similar with the one generated by a single user. We expect that the proposed method can be utilized for fast imagery map generation.