• Title/Summary/Keyword: Feature Detect

Search Result 851, Processing Time 0.028 seconds

Contactless Palmprint Recognition Based on the KLT Feature Points (KLT 특징점에 기반한 비접촉 장문인식)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.495-502
    • /
    • 2014
  • An effective solution to the variation on scale and rotation is required to recognize contactless palmprint. In this study, we firstly minimize the variation by extracting a region of interest(ROI) according to the size and orientation of hand and normalizing the ROI. This paper proposes a contactless palmprint recognition method based on KLT(Kanade-Lukas-Tomasi) feature points. To detect corresponding feature points, texture in local regions around KLT feature points are compared. Then, we recognize palmprint by measuring the similarity among displacement vectors which represent the size and direction of displacement of each pair of corresponding feature points. An experimental results using CASIA public database show that the proposed method is effective in contactless palmprint recognition. Especially, we can get the performance of exceeding 99% correct identification rate using multiple Gabor filters.

Feature Detection using Geometric Mean of Eigenvalues of Gradient Matrix (그레디언트 행렬 고유치의 기하 평균을 이용한 특징점 검출)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.769-776
    • /
    • 2014
  • It is necessary to detect the feature points existing simultaneously in both images and then find the corresponding relationship between the detected feature points. We propose a new feature detector based on geometric mean of two eigenvalues of gradient matrix which is able to measure the change of pixel intensities. The corner response of the proposed detector is proportional to the geometric mean and also the difference of two eigenvalues in the case of same geometric mean. We analyzed the localization error of the feature detection using aerial image and artificial image with various types of corners. The localization error of the proposed detector was smaller than that of the typical corner detector, Harris detector.

Linear SVM-Based Android Malware Detection and Feature Selection for Performance Improvement (선형 SVM을 사용한 안드로이드 기반의 악성코드 탐지 및 성능 향상을 위한 Feature 선정)

  • Kim, Ki-Hyun;Choi, Mi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.738-745
    • /
    • 2014
  • Recently, mobile users continuously increase, and mobile applications also increase As mobile applications increase, the mobile users used to store sensitive and private information such as Bank information, location information, ID, password on their mobile devices. Therefore, recent malicious application targeted to mobile device instead of PC environment is increasing. In particular, since the Android is an open platform and includes security vulnerabilities, attackers prefer this environment. This paper analyzes the performance of malware detection system applying linear SVM machine learning classifier to detect Android malware application. This paper also performs feature selection in order to improve detection performance.

Feature Selection to Mine Joint Features from High-dimension Space for Android Malware Detection

  • Xu, Yanping;Wu, Chunhua;Zheng, Kangfeng;Niu, Xinxin;Lu, Tianling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4658-4679
    • /
    • 2017
  • Android is now the most popular smartphone platform and remains rapid growth. There are huge number of sensitive privacy information stored in Android devices. Kinds of methods have been proposed to detect Android malicious applications and protect the privacy information. In this work, we focus on extracting the fine-grained features to maximize the information of Android malware detection, and selecting the least joint features to minimize the number of features. Firstly, permissions and APIs, not only from Android permissions and SDK APIs but also from the developer-defined permissions and third-party library APIs, are extracted as features from the decompiled source codes. Secondly, feature selection methods, including information gain (IG), regularization and particle swarm optimization (PSO) algorithms, are used to analyze and utilize the correlation between the features to eliminate the redundant data, reduce the feature dimension and mine the useful joint features. Furthermore, regularization and PSO are integrated to create a new joint feature mining method. Experiment results show that the joint feature mining method can utilize the advantages of regularization and PSO, and ensure good performance and efficiency for Android malware detection.

An Acceleration Method of Face Detection using Forecast Map (예측맵을 이용한 얼굴탐색의 가속화기법)

  • 조경식;구자영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • This paper proposes an acceleration method of PCA(Principal Component Analysis) based feature detection. The feature detection method makes decision whether the target feature is included in a given image, and if included, calculates the position and extent of the target feature. The position and scale of the target feature or face is not known previously, all the possible locations should be tested for various scales to detect the target. This is a search Problem in huge search space. This Paper proposes a fast face and feature detection method by reducing the search space using the multi-stage prediction map and contour Prediction map. A Proposed method compared to the existing whole search way, and it was able to reduce a computational complexity below 10% by experiment.

  • PDF

Study on Rub Vibration of Rotary Machine for Turbine Blade Diagnosis (터빈 블레이드 진단을 위한 회전기계 마찰 진동에 관한 연구)

  • Yu, Hyeon Tak;Ahn, Byung Hyun;Lee, Jong Myeong;Ha, Jeong Min;Choi, Byeong Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.714-720
    • /
    • 2016
  • Rubbing and misalignment are the most usual faults that occurs in rotating machinery and with them severe effect on power plant availability. Especially blade rubbing is hard to detect on FFT spectrum using the vibration signal. In this paper, the possibility of feature analysis of vibration signal is confirmed under blade rubbing and misalignment condition. And the lab-scale rotor test device provides the blade rubbing and shaft misalignment modes. Feature selection based on GA (genetic algorithm) is processed by the extracted feature of the time domain. Then, classification of the features is analyzed by using SVM (support vector machine) which is one of the machine learning algorithm. The results of features selection based on GA compared with those based on PCA (principal component analysis). According to the results, the possibility of feature analysis is confirmed. Therefore, blade rubbing and shaft misalignment can be diagnosed by feature of vibration signal.

A multisource image fusion method for multimodal pig-body feature detection

  • Zhong, Zhen;Wang, Minjuan;Gao, Wanlin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4395-4412
    • /
    • 2020
  • The multisource image fusion has become an active topic in the last few years owing to its higher segmentation rate. To enhance the accuracy of multimodal pig-body feature segmentation, a multisource image fusion method was employed. Nevertheless, the conventional multisource image fusion methods can not extract superior contrast and abundant details of fused image. To superior segment shape feature and detect temperature feature, a new multisource image fusion method was presented and entitled as NSST-GF-IPCNN. Firstly, the multisource images were resolved into a range of multiscale and multidirectional subbands by Nonsubsampled Shearlet Transform (NSST). Then, to superior describe fine-scale texture and edge information, even-symmetrical Gabor filter and Improved Pulse Coupled Neural Network (IPCNN) were used to fuse low and high-frequency subbands, respectively. Next, the fused coefficients were reconstructed into a fusion image using inverse NSST. Finally, the shape feature was extracted using automatic threshold algorithm and optimized using morphological operation. Nevertheless, the highest temperature of pig-body was gained in view of segmentation results. Experiments revealed that the presented fusion algorithm was able to realize 2.102-4.066% higher average accuracy rate than the traditional algorithms and also enhanced efficiency.

Brick Path Recognition Using Image Shape Pattern and Texture Feature (영상의 형태 패턴과 텍스처 특징을 이용한 보도블록의 인식방법)

  • Woo, Byung-Seok;Yang, Sung-Min;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.472-484
    • /
    • 2012
  • Raised or plain block is widely used for the pedestrian's safe passage. The insincere construction, insufficient maintenance and obstacle overlaid on the pavement cause pedestrian's accidents. This paper proposes a method to detect brick path by analyzing the shape pattern and texture feature of brick located in visible distance for a safe passage. A brick appears to a regular type because of its specific shape which repeats with its sized gap and its type varies according to the surrounding environment or use. This paper shows a method which extracts the shape pattern by analyzing single surface polygon and its frequency appearing in road area. The shape pattern is used to detect similar shape regions. Some regions are not detected because extraneous substances or chopped bricks distort the original shape. This problem can be solved by analyzing the texture feature vector. The analyzed vector of the previously detected regions yields the Gaussian distribution. This value in each undetected region is computed and checked whether it's satisfied with Gaussian distribution or not. The satisfied region is detected as the brick path. The experiment was performed with the various type's bricks to recognize so that the results showed as accurate as 95.9% in average.

Development of Artificial Diagnosis Algorithm for Dissolved Gas Analysis of Power Transformer (전력용 변압기의 유중가스 해석을 위한 지능형 진단 알고리즘 개발)

  • Lim, Jae-Yoon;Lee, Dae-Jong;Lee, Jong-Pil;Ji, Pyeong-Shik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.75-83
    • /
    • 2007
  • IEC code based decision nile have been widely applied to detect incipient faults in power transformers. However, this method has a drawback to achieve the diagnosis with accuracy without experienced experts. In order to resolve this problem, we propose an artificial diagnosis algorithm to detect faults of power transformers using Self-Organizing Feature Map(SOM). The proposed method has two stages such as model construction and diagnostic procedure. First, faulty model is constructed by feature maps obtained by unsupervised learning for training data. And then, diagnosis is performed by compare feature map with it obtained for test data. Also the proposed method usぉms the possibility and degree of aging as well as the fault occurred in transformer by clustering and distance measure schemes. To demonstrate the validity of proposed method, various experiments are unformed and their results are presented.

Feature Map for Collision Detection in Motion-Based Game using Web Camera (웹 카메라를 이용한 체감형 게임의 충돌감지를 위한 특징맵)

  • Lee, Young-Jae;Lee, Dae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.620-626
    • /
    • 2008
  • We propose a feature map method to detect a collision for a motion-based game. The feature map can be made an optimally reduced motion data using subtraction image and virtual ball images according to image size and condition. And we calculate the overlapped ratio between moving image data and objects. This ratio is an invariant for detection even though image size is changed. And we compare this ration with collision detection constant, the feature map can detect fast collisions as well as the collided direction. To evaluate the method, we implemented a motion-base game that consists of a web cam, a player, an enemy, and some virtual balls, and we obtained some valid results for our method for the collision detection. The results demonstrated that the proposed approach is robust, and they can be used as a basic collide detection algorithm for a motion-based game where the size and the position of characters are continuously changing.