• Title/Summary/Keyword: Feature Data

Search Result 4,336, Processing Time 0.042 seconds

A Study on Machining data Extraction using Feature Recognition Rules (특정형상인식을 이용한 가공테이터 추출에 관한 연구)

  • 이석희;정구섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.581-586
    • /
    • 1996
  • This paper presents a feature recognition system for recognizing and extracting feature information needed for machining from design data contained in the CAD database of AutoCAD system. The developed system carries out feature recognition from an orthographic view of a press mold containing not only atomic features such as holes, pockets, and slots, but also compound features. Based on the result of feature recognition, it generates a 3-D modeling of the press mold. Especially, The feature recognition part is designed for detecting feature styles according to feature definition and classification, extracting parameters for various atomic features, and constructing necessary data structures for the recognized features.

  • PDF

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

The Exchange of Feature Data Among CAD Systems Using XML (CAD 시스템간의 형상정보 교환을 위한 XML 이용에 관한 연구)

  • 박승현;최의성;정태형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.30-36
    • /
    • 2004
  • The exchange of model design data among heterogeneous CAD systems is very difficult because each CAD system has different data structures suitable for its own functions. STEP represents product information in a common computer-interpretable form that is required to remain complete and consistent when the product information is needed to be exchanged among different computer systems. However, STEP has complex architecture to represent point, line, curve and vectors of element. Moreover it can't represent geometry data of feature based models. In this study, a structure of XML document that represents geometry data of feature based models as neutral format has been developed. To use the developed XML document, a converter also has been developed to exchange modules so that it can exchange feature based data models among heterogeneous CAD systems. Developed XML document and Converter have been applied to commercial CAD systems.

A Study on the Development of Feature-Based NC Part Programming System 'FeaTURN' for Turning Operation (특징형상을 이용한 NC선반가공 프로그래밍 시스템 'FeaTURN'의 개발에 관한 연구)

  • 강신한;이재원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 1993
  • The feature based modeling approach is useful for post-CAD related works such as process planning and NC part programming. This paper describes the development of 'FeaTURN' system which is feature based NC part programming system for turning operation. The programming task in 'FeaTURN' system becomes easy and effective with the assistance of feature icons. The manufacturing attributes can be handled toghther with the features during input procedure. The cutter location data (CLD) is determined by the processor module. The post process module converts the CL data to machine control data (MCD). Also, the system graphically displays the tool path.

CREATING MULTIPLE CLASSIFIERS FOR THE CLASSIFICATION OF HYPERSPECTRAL DATA;FEATURE SELECTION OR FEATURE EXTRACTION

  • Maghsoudi, Yasser;Rahimzadegan, Majid;Zoej, M.J.Valadan
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.6-10
    • /
    • 2007
  • Classification of hyperspectral images is challenging. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. In other words in order to obtain statistically reliable classification results, the number of necessary training samples increases exponentially as the number of spectral bands increases. However, in many situations, acquisition of the large number of training samples for these high-dimensional datasets may not be so easy. This problem can be overcome by using multiple classifiers. In this paper we compared the effectiveness of two approaches for creating multiple classifiers, feature selection and feature extraction. The methods are based on generating multiple feature subsets by running feature selection or feature extraction algorithm several times, each time for discrimination of one of the classes from the rest. A maximum likelihood classifier is applied on each of the obtained feature subsets and finally a combination scheme was used to combine the outputs of individual classifiers. Experimental results show the effectiveness of feature extraction algorithm for generating multiple classifiers.

  • PDF

The Exchage of Feature Data Among CAD System Using XML (XML을 이용한 CAD 시스템간의 형상정보 교환)

  • 정태형;최의성;박승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.434-440
    • /
    • 2003
  • The exchange of model design date among heterogeneous CAD systems is a difficult task because each system has different data structures suitable for its own functions. STEP has been able to represent product information as a common computer-interpretable form that is required to remain complete and consistent when the product informant is needed to be exchanged among different computer system. However, STEP has difficult architecture in is representing point, line, curve and vectors of element, more over it can't represent geometry data of feature based models. In this study, a structure of XML document that represents geometry data of feature based models as neutral format has been developed. To use the developed XML document, a Converter has also been developed to exchange modules so that it can exchange feature based data models among heterogeneous CAD systems. Aa for evaluation of the developed XML document and Converter, Solidworks and SolidEdge are selected.

  • PDF

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

Feature extraction for part recognition system of FMC (FMC의 부품인식을 위한 형상 정보 추출에 관한 연구)

  • 김의석;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.892-895
    • /
    • 1992
  • This paper presents a methodology for automatic feature extraction used in a vision system of FMC (flexible Manufacturing Cell). To implement a robot vision system, it is important to make a feature database for object recognition, location, and orientation. For industrial applications, it is necessary to extract feature information from CAD database since the detail information about an object is described in CAD data. Generally, CAD description is three dimensional information but single image data from camera is two dimensional information. Because of this dimensiional difference, many problems arise. Our primary concern in this study is to convert three dimensional data into two dimensional data and to extract some features from them and store them into the feature database. Secondary concern is to construct feature selecting system that can be used for part recognition in a given set of objects.

  • PDF

A Deep Learning Application for Automated Feature Extraction in Transaction-based Machine Learning (트랜잭션 기반 머신러닝에서 특성 추출 자동화를 위한 딥러닝 응용)

  • Woo, Deock-Chae;Moon, Hyun Sil;Kwon, Suhnbeom;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.18 no.2
    • /
    • pp.143-159
    • /
    • 2019
  • Machine learning (ML) is a method of fitting given data to a mathematical model to derive insights or to predict. In the age of big data, where the amount of available data increases exponentially due to the development of information technology and smart devices, ML shows high prediction performance due to pattern detection without bias. The feature engineering that generates the features that can explain the problem to be solved in the ML process has a great influence on the performance and its importance is continuously emphasized. Despite this importance, however, it is still considered a difficult task as it requires a thorough understanding of the domain characteristics as well as an understanding of source data and the iterative procedure. Therefore, we propose methods to apply deep learning for solving the complexity and difficulty of feature extraction and improving the performance of ML model. Unlike other techniques, the most common reason for the superior performance of deep learning techniques in complex unstructured data processing is that it is possible to extract features from the source data itself. In order to apply these advantages to the business problems, we propose deep learning based methods that can automatically extract features from transaction data or directly predict and classify target variables. In particular, we applied techniques that show high performance in existing text processing based on the structural similarity between transaction data and text data. And we also verified the suitability of each method according to the characteristics of transaction data. Through our study, it is possible not only to search for the possibility of automated feature extraction but also to obtain a benchmark model that shows a certain level of performance before performing the feature extraction task by a human. In addition, it is expected that it will be able to provide guidelines for choosing a suitable deep learning model based on the business problem and the data characteristics.

GMM Based Voice Conversion Using Kernel PCA (Kernel PCA를 이용한 GMM 기반의 음성변환)

  • Han, Joon-Hee;Bae, Jae-Hyun;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.167-180
    • /
    • 2008
  • This paper describes a novel spectral envelope conversion method based on Gaussian mixture model (GMM). The core of this paper is rearranging source feature vectors in input space to the transformed feature vectors in feature space for the better modeling of GMM of source and target features. The quality of statistical modeling is dependent on the distribution and the dimension of data. The proposed method transforms both of the distribution and dimension of data and gives us the chance to model the same data with different configuration. Because the converted feature vectors should be on the input space, only source feature vectors are rearranged in the feature space and target feature vectors remain unchanged for the joint pdf of source and target features using KPCA. The experimental result shows that the proposed method outperforms the conventional GMM-based conversion method in various training environment.

  • PDF