• Title/Summary/Keyword: Feature Classification

Search Result 2,173, Processing Time 0.031 seconds

A Study on Feature Selection and Feature Extraction for Hyperspectral Image Classification Using Canonical Correlation Classifier (정준상관분류에 의한 하이퍼스펙트럴영상 분류에서 유효밴드 선정 및 추출에 관한 연구)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.419-431
    • /
    • 2009
  • The core of this study is finding out the efficient band selection or extraction method discovering the optimal spectral bands when applying canonical correlation classifier (CCC) to hyperspectral data. The optimal efficient bands grounded on each separability decision technique are selected using Multispec$^{(C)}$ software developed by Purdue university of USA. Total 6 separability decision techniques are used, which are Divergence, Transformed Divergence, Bhattacharyya, Mean Bhattacharyya, Covariance Bhattacharyya, Noncovariance Bhattacharyya. For feature extraction, PCA transformation and MNF transformation are accomplished by ERDAS Imagine and ENVI software. For the comparison and assessment on the effect of feature selection and feature extraction, land cover classification is performed by CCC. The overall accuracy of CCC using the firstly selected 60 bands is 71.8%, the highest classification accuracy acquired by CCC is 79.0% as the case that executes CCC after appling Noncovariance Bhattacharyya. In conclusion, as a matter of fact, only Noncovariance Bhattacharyya separability decision method was valuable as feature selection algorithm for hyperspectral image classification depended on CCC. The lassification accuracy using other feature selection and extraction algorithms except Divergence rather declined in CCC.

Analysis of Relation of Class Separability According to Different Kind of Satellite Images (위성영상의 종류에 따른 분리도 특성의 상관관계 분석)

  • Hong, Soon-Heon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.215-224
    • /
    • 2007
  • The classification of the satellite images is basic part in Remote sensing. In classification of the satellite images, class separability feature is very effective accuracy of the images classified. For improving classification accuracy, It is necessary to study classification methode than analysis of class separability feature deciding classification probability. In this study, IKONOS, SPOT 5, Landsat TM, were resampled to sizes 1m grid. Above images were calculated the class separability prior to the step for classification of pixels. This Study concludes, each image was measured by the rate of class separability, values classified were showed highly about $1,600{\sim}2,000$.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

Seasonal Images Classification with Convolutional Neural Networks (컨볼루션 신경망을 사용한 계절 이미지 분류)

  • Snowberger, Aaron Daniel;Lee, Choong Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.444-447
    • /
    • 2022
  • In recent years, computer vision image classification tasks have become faster and better due to deeper neural network architectures. But while most image classification tasks are designed to classify images based on specific image features (such as distinguishing between cats and dogs), there are not many classification models that have been trained to distinguish between time periods such as day and night or different seasons of the year. And while some research has been done into distinguishing between seasons in images of the same location, this paper presents a varied approach to the problem of seasonal classification of generic images. Three methods for seasonal image classification, from simple feature extraction, to building a convolutional neural network, to transfer learning were studied and the accuracy results were compared and analyzed.

  • PDF

Feature Selection and Hyper-Parameter Tuning for Optimizing Decision Tree Algorithm on Heart Disease Classification

  • Tsehay Admassu Assegie;Sushma S.J;Bhavya B.G;Padmashree S
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.150-154
    • /
    • 2024
  • In recent years, there are extensive researches on the applications of machine learning to the automation and decision support for medical experts during disease detection. However, the performance of machine learning still needs improvement so that machine learning model produces result that is more accurate and reliable for disease detection. Selecting the hyper-parameter that could produce the possible maximum classification accuracy on medical dataset is the most challenging task in developing decision support systems with machine learning algorithms for medical dataset classification. Moreover, selecting the features that best characterizes a disease is another challenge in developing machine-learning model with better classification accuracy. In this study, we have proposed an optimized decision tree model for heart disease classification by using heart disease dataset collected from kaggle data repository. The proposed model is evaluated and experimental test reveals that the performance of decision tree improves when an optimal number of features are used for training. Overall, the accuracy of the proposed decision tree model is 98.2% for heart disease classification.

Effects of Preprocessing on Text Classification in Balanced and Imbalanced Datasets

  • Mehmet F. Karaca
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.591-609
    • /
    • 2024
  • In this study, preprocessings with all combinations were examined in terms of the effects on decreasing word number, shortening the duration of the process and the classification success in balanced and imbalanced datasets which were unbalanced in different ratios. The decreases in the word number and the processing time provided by preprocessings were interrelated. It was seen that more successful classifications were made with Turkish datasets and English datasets were affected more from the situation of whether the dataset is balanced or not. It was found out that the incorrect classifications, which are in the classes having few documents in highly imbalanced datasets, were made by assigning to the class close to the related class in terms of topic in Turkish datasets and to the class which have many documents in English datasets. In terms of average scores, the highest classification was obtained in Turkish datasets as follows: with not applying lowercase, applying stemming and removing stop words, and in English datasets as follows: with applying lowercase and stemming, removing stop words. Applying stemming was the most important preprocessing method which increases the success in Turkish datasets, whereas removing stop words in English datasets. The maximum scores revealed that feature selection, feature size and classifier are more effective than preprocessing in classification success. It was concluded that preprocessing is necessary for text classification because it shortens the processing time and can achieve high classification success, a preprocessing method does not have the same effect in all languages, and different preprocessing methods are more successful for different languages.

Feature Vector Extraction using Time-Frequency Analysis and its Application to Power Quality Disturbance Classification (시간-주파수 해석 기법을 이용한 특징벡터 추출 및 전력 외란 신호 식별에의 응용)

  • 이주영;김기표;남상원
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.619-622
    • /
    • 2001
  • In this paper, an efficient approach to classification of transient and harmonic disturbances in power systems is proposed. First, the Stop-and-Go CA CFAR Detector is utilized to detect a disturbance from the power signals which are mixed with other disturbances and noise. Then, (i) Wigner Distribution, SVD(Singular Value Decomposition) and Fisher´s Criterion (ii) DWT and Fisher´s Criterion, are applied to extract an efficient feature vector. For the classification procedure, a combined neural network classifier is proposed to classify each corresponding disturbance class. Finally, the 10 class data simulated by Matlab power system blockset are used to demonstrate the performance of the proposed classification system.

  • PDF

Performance improvement of Classification of Steam Generator Tube Defects in Nuclear Power Plant Using Neural Network (신경회로망을 이용한 원전SG 세관 결함패턴 분류성능 향상기법)

  • Jo, Nam-Hoon;Han, Ki-Won;Song, Sung-Jin;Lee, Hyang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1224-1230
    • /
    • 2007
  • In this paper, we study the classification of defects at steam generator tube in nuclear power plant using eddy current testing (ECT). We consider 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. Through numerical analysis program based on finite element modeling, 400 ECT signals are generated by varying width and depth of each defect type. In order to improve the classification performance, we propose new feature extraction technique. After extracting new features from the generated ECT signals, multi-layer perceptron is used to classify the defect patterns. Through the computer simulation study, it is shown that the proposed method achieves 100% classification success rate while the previous method yields 91% success rate.

ECG Pattern Classification Using Back Propagation Neural Network (역전달 신경회로망을 이용한 심전도 신호의 패턴분류에 관한 연구)

  • 이제석;이정환;권혁제;이명호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.67-75
    • /
    • 1993
  • ECG pattern was classified using a back-propagation neural network. An improved feature extractor of ECG is proposed for better classification capability. It is consisted of preprocessing ECG signal by an FIR filter faster than conventional one by a factor of 5. QRS complex recognition by moving-window integration, and peak extraction by quadratic approximation. Since the FIR filter had a periodic frequency spectrum, only one-fifth of usual processing time was required. Also, segmentation of ECG signal followed by quadratic approximation of each segment enabled accurate detection of both P and T waves. When improtant features were extracted and fed into back-propagation neural network for pattern classification, the required number of nodes in hidden and input layers was reduced compared to using raw data as an input, also reducing the necessary time for study. Accurate pattern classification was possible by an appropriate feature selection.

  • PDF

A Classification Technique for Panchromatic Imagery Using Independent Component Analysis Feature Extraction

  • Byoun, Seung-Gun;Lee, Ho-Yong;Kim, Min;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.23-28
    • /
    • 2002
  • Among effective feature extraction methods from the small-patched image set, independent component analysis (ICA) is recently well known stochastic manner to find informative basis images. The ICA simultaneously learns both basis images and independent components using high order statistic manners, because that information underlying between pixels are sensitive to high-order statistic models. The topographic ICA model is adapted in our experiment. This paper deals with an unsupervised classification strategies using learned ICA basis images. The experimental result by proposed classification technique shows superior performance than classic texture analysis techniques for the panchromatic KOMPSAT imagery.

  • PDF