• 제목/요약/키워드: Feasible Direction Method

검색결과 72건 처리시간 0.023초

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

유용방향법에 의한 고유진동수 최적화 (Frequency Optimization Using by Feasible Direction Method)

  • 조희근;박영원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.410-415
    • /
    • 2000
  • In this paper feasible direction method which is one of the optimization method is adopted to natural frequency optimization. In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleight-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculated the optimal thickness and the thickness ratio of each element of 2-D plane element through the parallel algorithm method which satisfy the design constraint of natural frequency.

  • PDF

밀도 분포를 이용한 구조물 및 리브의 최적 위상 설계 (Optimal Topoloty Design of Structures and Ribs Using Density Distribution)

  • 정진평;이건우
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.66-77
    • /
    • 1996
  • Optimal topology design is to search the optimal configuration of a structure which can be used as a shape at the conceptual design stage. Our objective is to maximize the stiffness of the structures and ribs under a material usage constraintl. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The configuration is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimiza- tion is performed by Feasible Direction Method. Feasible Direction Method can handle various problems simultaneously, that is, mult-objectives and multi-constraints. Total computation time can be reduced by the quadratic relationship between the density and the material property and fewer design variables than Homogenization Method. Toplogy optimization technique developed in this research is applied to design the shapes of the ribs.

  • PDF

Feasible Direction Method를 사용한 열.탄성.크리프 및 진동수에 대한 최적화 (Thermo-elastic Creep and Frequency Optimization by Using Feasible Direction Method)

  • 조희근;박영원;강연식;이경돈
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.857-865
    • /
    • 2001
  • In finite element analysis, engineering optimizations are divided two major parts that are topology and structural optimization. Until these days most structural optimizations usually concentrate on single disciplinary optimization. Therefore numerical analysis and methodology which can optimize thermo-elastic creep and frequency phenomena are not suggested. In this paper finite element analysis methodology and algorithm of thermo -elastic creep and frequency optimizations are suggested and corroborate the efficiency of suggested new numerical methodology and algorithm by solving example problem.

A GLOBALLY AND SUPERLIEARLY CONVERGENT FEASIBLE SQP ALGORITHM FOR DEGENERATE CONSTRAINED OPTIMIZATION

  • Chen, Yu;Xie, Xiao-Liang
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.823-835
    • /
    • 2010
  • In this paper, A FSQP algorithm for degenerate inequality constraints optimization problems is proposed. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving a quadratic programming subproblem. To overcome the Maratos effect, a higher-order correction direction is obtained by solving another quadratic programming subproblem. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions. Finally, some preliminary numerical results are reported.

Optimal design of laminated composite plates to maximise fundamental frequency using MFD method

  • Topal, Umut;Uzman, Umit
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.479-491
    • /
    • 2006
  • This paper deals with optimal fibre orientations of symmetrically laminated fibre reinforced composite structures for maximising the fundamental frequency of small-amplitude. A set of fiber orientation angles in the layers are considered as design variable. The Modified Feasible Direction method is used in order to obtain the optimal designs. The effects of number of layers, boundary conditions, laminate thicknesses, aspect ratios and in-plane loads on the optimal designs are studied.

원쌍대 내부점기법에서 초기해 선정과 중심화 힘을 이용한 개선 방향의 수정 (Finding an initial solution and modifying search direction by the centering force in the primal-dual interior point method)

  • 성명기;박순달
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.530-533
    • /
    • 1996
  • This paper deals with finding an initial solution and modifying search direction by the centrering force in the predictor-corrector method which is a variant of the primal-dual barrier method. These methods were tested with NETLIB problems. Initial solutions which are located close to the center of the feasible set lower the number of iterations, as they enlarge the step length. Three heuristic methods to find such initial solution are suggested. The new methods reduce the average number of iterations by 52% to at most, compared with the old method assigning 1 to initial valurs. Solutions can move closer to the central path fast by enlarging the centering force in early steps. It enlarge the step length, so reduces the number of iterations. The more effective this method is the closer the initial solution is to the boundary of the feasible set.

  • PDF

밀도 분포를 이용한 최적 위상 설계 시스템의 개발 (Development of CAD System for Optimal Topology Design using Density Distribution)

  • 정진평;이건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

병렬연산을 이용한 익형의 최적 설계 (The Optimum Design of Airfoil Shape with Parallel Computation)

  • 조장근;박원규
    • 한국항공우주학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2003
  • 익형에 대한 공력 최적설계 프로그램을 개발하였으며, 점성 유동장에 대한 보다 정확한 정보를 설계에 반영하기 위하여 나비어-스톡스 방정식을 사용하였다. 최적설계 방법으로는 민감도 해석을 위하여 수정유용방향탐색방법(Modified Method of Feasible Directions, MMFD)을 사용하였으며 이동거리 계산을 위하여 다항식 보간법을 사용하였다. 또한 설계시간을 단축하기 위하여 MPI를 사용하여 병렬화하였다. 전체 유동장을 8개의 영역으로 분할하였으며 분할된 영역은 지정된 프로세서에 할당하여 계산을 수행하였다. 민감도 계산을 위하여 각 프로세서에 할당하여 계산을 수행하였다. 민감도 계산을 위하여 각 프로세서에 각 탐색방향을 할당하여 민감도를 병렬계산하였다. 본 연구의 수행 결과 양력은 허용한도 내의 일정한 값을 유지하는 가운데 항력이 감소된 최적화된 익형의 형상을 설계할 수 있었다.

Buckling load optimization of laminated composite stepped columns

  • Topal, Umut
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.107-111
    • /
    • 2017
  • This paper deals with critical buckling load optimization of symmetric angle-ply laminated stepped flat columns under axial compression load. The design objective is the maximization of the critical buckling load and the design variable is the fiber orientations in the layers of the laminates. The classical laminate plate theory is used for the finite element solution of the laminated stepped flat columns. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is exploited. Finally, the optimization results are presented for width ratios (b/B), ratios of fillet radius ($r_1/r_2$), aspect ratios (L/B) and boundary conditions. The results are presented in graphical and tabular forms and the results are compared.