• Title/Summary/Keyword: FeCrAl

Search Result 509, Processing Time 0.03 seconds

Investigation of Corrosion Mechanism by Analyses of Spent Chromia Refractory fvom a Coal Gasifier (석탄 가스화기에서의 크로미아 내화물 분석을 통한 화학적 침식 기구 규명)

  • Kim Han Bom;Oh Myongsook
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.281-290
    • /
    • 2004
  • Spent refractories from a coal gasifier after 1000 hours of operation were analyzed for crystalline phases, chemical composition and microstructures as a function of slag penetration depth, and the slag corrosion mechanism was determined. The chemical corrosion of chromia refractory occurred via reaction between Cr$_2$O$_3$ of the refractory and FeO and A1$_2$O$_3$ in the slag. The FeO reacted with Cr$_2$O$_3$ at the slare/refractory interface and formed FeCr$_2$O$_4$. After all FeO were consumed, Al in the penetrating slag substituted Cr in Cr$_2$O$_3$, forming (Al, Cr)$_2$O$_3$, at the edges of the particle, which were broken to form fragments rich in Al. The corrosion resistance of Cr$_2$O$_3$ varied with the particle size and the extent of sintering, and the higher resistance was observed in the larger and more sintered particles. There was no chemical change in ZrO$_2$, but showed the effects of physical corrosion: the grain boundaries became more wavy, and ZrO$_2$ grains were split in the corroded area. The slag penetration depth increased in the refractory samples farther down from the feed nozzles.

A Study on the Behaviour of High Temperature Corrosion of Fe-22Cr-5Al-X(X=Zr,Y) (Fe-22Cr-5Al-X(X=Zr,Y)합금의 고온 부식거동에 관한 연구)

  • Lee, Byeong-U;Park, Heung-Il;Kim, Jung-Seon;Lee, Gwang-Hak;Kim, Heung-Sik
    • Korean Journal of Materials Research
    • /
    • v.7 no.10
    • /
    • pp.898-907
    • /
    • 1997
  • Fe-22Cr-5AI-X(X=Zr, Y)합금을 1143K, 고온 황화(P$s_{2}$=1.11x$10^{-7}$atm, P$O_{s}$ =3.11x$10^{-20atm}$) 및 황화/산화 (P$s_{2}$=8.31x$10^{-8}$atm, P$O_{s}$ =3.31x$10^{-18atm}$) 환경의 복합가스 분위기에서 1-30시간동안 노출하여 합금표면에 형성된 부식층을 관찰하여 SEM/EDS로 분석하였다. Fe-22Cr-5AI합금은 고온 부식환경에서 부식 생성물의 성장은 포물선법칙을 따르고 주요 성분은 결함이 많고 다공질인 철과 크롬의 황화물[(Fe, Cr)Sx]이므로 고온 내식성이 감소하였다. Zr을 1wt%첨가한 Fe-22Cr-5AI합금의 고온 부식거동은 Y을 1wt%첨가한 합금과 비슷한 거동을 나타내었다. 황화환경에서는 Cr의 선택 황화에 의한 크롬 황화물(CrS)이 생성되고 노출시간의 경과에 따라 (Fe, Cr)Sx나 (Cr, Fe)Sx 등의 황화물의 성장으로 고온 내식성이 감소하였다. 그러나 황화/산화환경에서는 초기에는 알루미늄산화물(A $I_{2}$ $O_{3}$)및 지르코늄산화물(Zr $O_{2}$)등이 생성되어 보호적이었으나 15시간이후 부터 (Fe, Cr)Sx나 (Cr, Fe)Sx 의 황화물의 성장으로 고온 내식성이 감소하였다.

  • PDF

Structural Characteristics, Microstructure and Mechanical Properties of Fe-Cr-Al Metallic Foam Fabricated by Powder Alloying Process (분말 합금법으로 제조된 Fe-Cr-Al 금속 다공체의 구조, 미세조직 및 기계적 특성)

  • Kim, Kyu-Sik;Kang, Byeong-Hoon;Park, Man-Ho;Yun, Jung-Yeul;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 ㎛ (450 foam) and 1220 ㎛ (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10-3/s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.

Electrical conductivity of olivine type LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 powders (올리빈형 LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 분말의 전기전도도)

  • Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.141-146
    • /
    • 2010
  • $LiFePO_4$ doped with Cr showed improved electrochemical properties as a cathode material of lithium-ion batteries compared to the undoped. The improvement was thought that the doping would raise the electronic conductivity of the compounds. The electrical conductivity of $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$ and $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder was measured in the temperature range from 30 to $80^{\circ}C$. The doped powders were synthesized via mechanochemical milling and subsequent heat treatment at 675~$750^{\circ}C$ for 5~10h. The doping enhanced grain growth and electrical conductivity. The electrical conductivity of the $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder at $30^{\circ}C$ was $1{\times}10^{-8}S/cm$, which was higher two orders of magnitude than that of the undoped.

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti-6Al-4V Prepared by Direct Energy Deposition

  • Byun, Yool;Lee, Sangwon;Seo, Seong-Moon;Yeom, Jong-taek;Kim, Seung Eon;Kang, Namhyun;Hong, Jaekeun
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1213-1220
    • /
    • 2018
  • The effects of Cr and Fe addition on the mechanical properties of Ti-6Al-4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior ${\beta}$ phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti-6Al-4V resulted in a partially melted Ti-6Al-4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti-33Fe) and the Ti-6Al-4V powder, which induced the formation of a thick liquid layer surrounding Ti-6Al-4V. The ductility of Fe-added Ti-6Al-4V was thus poorer than that of Cr-added Ti-6Al-4V.

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

Magnetic Pulsed Compaction of nanostructured Al-Fe-Cr-Ti Powder and wear properties (Al-Fe-Cr-Ti 나노결정 합금분말의 자기펄스 성형 및 마모 특성)

  • Kim, Jun-Ho;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.528-530
    • /
    • 2008
  • The effect of consolidation temperature on the microstructure, density and mechanical properties (especially, wear property) of $Al_{92.5}-Fe_{2.5}-Cr_{2.5}-Ti_{2.5}$ alloy fabricated by gas atomization and magnetic pulsed compaction was investigated. All consolidated alloys consisted of homogeneously distributed fine-grained fcc-Al matrix and intermetallic compounds. Relative higher mechanical properties in the MPCed specimen were attributed to the retention of the nanostructure in consolidated bulk without cracks. The as consolidated bulk by magnetic pulsed compaction showed the enhanced wear properties than that of a general consolidation process. In addition, the wear mechanism and fracture mode of MPCed bulk was discussed.

  • PDF