Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.1.37

Structural Characteristics, Microstructure and Mechanical Properties of Fe-Cr-Al Metallic Foam Fabricated by Powder Alloying Process  

Kim, Kyu-Sik (Department of Materials Science and Engineering, Inha University)
Kang, Byeong-Hoon (School of Advanced Materials Engineering, Andong National University)
Park, Man-Ho (Asflow)
Yun, Jung-Yeul (Korea Institute of Materials Science)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.27, no.1, 2020 , pp. 37-43 More about this Journal
Abstract
The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 ㎛ (450 foam) and 1220 ㎛ (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10-3/s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.
Keywords
Fe-Cr-Al foam; Metallic foam; Powder alloying process; Pore size; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Yu, H. Chen, M. Pan, Y. Tang, K. Zeng, F. Peng and H. Wang: Appl. Catal., A, 327 (2007) 106.   DOI
2 T. J. Lu: Int. J. Heat Mass Transfer., 42 (1999) 2031.   DOI
3 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
4 G. J. Davies and S. Zhen: J. Mater. Sci., 18 (1983) 1899.   DOI
5 R. A. Steven and P. E. J. Flewitt: Mater. Sci. Eng., 37 (1979) 237.   DOI
6 G. Walther, B. Kloden, T. Buttner, T. Weissgarber, B. Kieback, A. Bohm, D. Naumann, S. Saberi and L. Timberg: Adv. Eng. Mater., 10 (2008) 803.   DOI
7 J. Choi and K. Kim: J. Korean Powder Metall. Inst., 17 (2010) 489.   DOI
8 Y. He, J. Liu, S. Qiu, Z. Deng, Y. Yang and A. McLean: Mater. Sci. Eng. A, 726 (2018) 56.   DOI
9 J. Engkvist, U. Bexell, M. Grehk and M. Olsson: Mater. Corros., 60 (2009) 876.   DOI
10 F. Clemendot, J. M. Gras, J. C. Van Duysen and G. Zachariey: Corros. Sci., 35 (1993) 901.   DOI
11 D. H. Kim, B. Y. Yu, P. R. Cha, W. Y. Yoon, J. Y. Byun and S. H. Kim: Surf. Coat. Technol., 209 (2012) 169.   DOI
12 J. S. Oh, S. H. Lim, S. H. Choi, M. H. Park and K. A. Lee: Advanced Materials Research, 690-693 (2013) 294.   DOI
13 S. H. Lim, J. S. Oh, Y. M. Kong, B. K. Kim, M. H. Park and K. A. Lee: Korean J. Met. Mater., 51 (2013) 743.   DOI
14 N. Michailidis, F. Stergioudi, H. Omar and D. N. Tsipas: Mech. Mater., 42 (2010) 142.   DOI
15 B. H. Smith, S. Szyniszewski, J. F. Hajjar, B. W. Schafer and S. R. Arwade: J. Constr. Steel Res., 71 (2012) 1.   DOI
16 L. J. Gibson and M. F. Ashby: Cellular solids: Structure and Properties, 2nd Ed. Cambridge University Press, Cambridge, UK (1997).