• Title/Summary/Keyword: Fe-reduction

Search Result 1,234, Processing Time 0.026 seconds

Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods (화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성)

  • 박현우;이백희;이규환;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

Synthesis of FePt Nanoparticles by Chemical Reduction Process (화학적인 환원 공정에 의한 FePt 나노입자의 합성)

  • 김순길;이창우;이재성
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.242-246
    • /
    • 2004
  • FePt nanoparticles for high-density magnetic recording media were synthesized by the simultaneous chemical reduction of Fe(acac) $_2$ and Pt(acac) $_2$ with 1,2-hexadecanediol as the reducing reagent. TEM images showed that the shape of as-synthesized FePt nanoparticle was spherical and average particle size was 3 nm. Also, SAD pattern showed that crystal structure was disordered FCC (face centered cubic). These FCC structured nanoparticles were transformed FCT (face centered tetragonal) structure by annealing at 55$0^{\circ}C$ for 30 min in Ar atmosphere. XRD analysis revealed that as-synthesized FePt nanoparticles were transformed from disordered FCC to ordered FCT. Finally, the coercivity of 2 kOe for FePt nanoparticles with FCT structure was obtained by VSM measurement.

Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

  • Feng, Xianghua;Ding, Shimin;Zhang, Lixian
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3691-3695
    • /
    • 2012
  • Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations resulte in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

Stoichiometry, Thermal Stability and Reducibility of Perovskite-Type Mixed Oxide LaBO$_3$ (B = Fe, Co, Ni)

  • Park, Il-Hyun;Lee, Hyung-Pyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.5
    • /
    • pp.283-288
    • /
    • 1988
  • The titled properties on reduction of the perovskite $LaBO_3$ (B = Fe, Co, Ni) have been investigated by means of temperature-programmed reduction, isothermal reduction and X-ray diffraction methods. Nominal composition of $LaFeO_{3.18},\;LaCoO_{3.00}\;and\;LaNiO_{2.92}$ are determined. Reduction reaction of these mixed oxides differed according to B-site transition metal and thermal stability on reduction decreased as following order: $LaFeO_{3.18}$ > $LaCoO_{3.00}$ > $LaNiO_{2.92}$. From the results of isothermal reaction, kinetics on reduction of the perovskite has been discussed in detail.

Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments (혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화)

  • Hyun Junc-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Nitrate Reduction by Fe(0)/iron Oxide Mineral Systems: A Comparative Study using Different Iron Oxides (영가철과 여러 가지 산화철 조합공정을 이용한 질산성질소 환원에 관한 연구)

  • Song, Hocheol;Jeon, Byong-Hun;Cho, Dong-Wan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • This paper presents the feasibility of using different iron oxides (microscale hematite (HT), microscale magnetite (MT), and nanoscale maghemite (NMH)) in enhancing nitrate reduction by zero-valent iron (Fe(0)) under two solution conditions (artificial acidic water and real groundwater). Addition of MT and NMH into Fe(0) system resulted in enhancement of nitrate reduction compared to Fe(0) along reaction, especially in groundwater condition, while HT had little effect on nitrate reduction in both solutions. Field emission scanning electron microscopy (FESEM) analysis showed association of MT and NMH with Fe(0) surface, presumably due to magnetic attraction. The rate enhancement effect of the minerals is presumed to arise from its role as an electron mediator that facilitated electron transport from Fe(0) to nitrate. The greater enhancement of MT and NMH in groundwater was attributed to surface charge neutralization by calcium and magnesium ions in groundwater, which in turn facilitated adsorption of nitrate on Fe(0) surface.

Synthesis of Magnetic Powder in the Sm-Fe-N System by the Reduction-Diffusion Process (환원-확산법에 의한 Sm-Fe-N계 자성분말 제조)

  • Lee, Jung-Goo;Kang, Seok-Won;Park, Sang-Jun;Oh, Yung-Woo;Choi, Chul-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.842-846
    • /
    • 2010
  • In the present study, the reduction-diffusion method was employed to produce Sm-Fe alloy powder. It was confirmed that the amount of unreacted ${\alpha}-Fe$ in $Sm_2Fe_{17}$ matrix gradually decreased as the percentage of $Sm_2O_3$ increased. $Sm_2Fe_{17}$ single-phase powder was produced by the reduction-diffusion method with 40% excess $Sm_2O_3$. The Ca and Oxygen contents of the powder were approximately 300 ppm and 1600 ppm, respectively, after washing and acid treatment. By a subsequent nitrogenation, $Sm_2Fe_{17}N_x$ magnetic powders were produced. The coercivity of the powder increased with decreasing of the particle size by ball milling, and the highest coercivity of 2850 Oe was obtained after milling for 10 hours.

Chemical Solution Mixing and Hydrogen Reduction Method for Fabrication of Nanostructured Fe-Co Alloy Powders (화학용액 혼합과 수소환원법을 이용한 나노구조 Fe-Co 합금분말의 제조)

  • 박광현;박현우;이백희;장시영;이정근;김영도
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured $Fe_xCo_{1-x}$ alloy powders. Fe-Co chloride mixture, FeCl$_2$ and COCI$_2$ with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated $Fe_xCo_{1-x}$(x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe$_{100}$. Saturation magnetization value at Fe$_{70}$Co$_{30}$ composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co$_{100}$.

A Non-Pt Catalyst for Improved Oxygen Reduction Reaction in Microbial Fuel Cells

  • Kim, Jy-Yeon;Han, Sang-Beom;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Fe-tetramethoxyphenylporphyrin on carbon black (Fe-TMPP/C) is examined and compared with carbon (C) and Pt-coated carbon (Pt/C) for oxygen reduction reaction in a two chambered microbial fuel cell (MFC). The Fe-TMPP/C is prepared by heat treatment and characterized using SEM, TEM, and XPS. The electrochemical properties of catalysts are characterized by voltammerty and single cell measurements. It is found that the power generation in the MFC with Fe-TMPP/C as the cathode is higher than that with Pt/C. The maximum power of the Fe-TMPP/C is 0.12 mW compared with 0.10 mW (Pt/C) and 0.02 mW (C). This high output with the Fe-TMPP/C indicates that MFCs are promising in further practical applications with low cost macrocycles catalysts.