Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.09.842

Synthesis of Magnetic Powder in the Sm-Fe-N System by the Reduction-Diffusion Process  

Lee, Jung-Goo (Functional Materials Division, Korea Institute of Materials Science)
Kang, Seok-Won (Functional Materials Division, Korea Institute of Materials Science)
Park, Sang-Jun (Functional Materials Division, Korea Institute of Materials Science)
Oh, Yung-Woo (Division of Materials Science and Engineering Kyungnam University)
Choi, Chul-Jin (Functional Materials Division, Korea Institute of Materials Science)
Publication Information
Korean Journal of Metals and Materials / v.48, no.9, 2010 , pp. 842-846 More about this Journal
Abstract
In the present study, the reduction-diffusion method was employed to produce Sm-Fe alloy powder. It was confirmed that the amount of unreacted ${\alpha}-Fe$ in $Sm_2Fe_{17}$ matrix gradually decreased as the percentage of $Sm_2O_3$ increased. $Sm_2Fe_{17}$ single-phase powder was produced by the reduction-diffusion method with 40% excess $Sm_2O_3$. The Ca and Oxygen contents of the powder were approximately 300 ppm and 1600 ppm, respectively, after washing and acid treatment. By a subsequent nitrogenation, $Sm_2Fe_{17}N_x$ magnetic powders were produced. The coercivity of the powder increased with decreasing of the particle size by ball milling, and the highest coercivity of 2850 Oe was obtained after milling for 10 hours.
Keywords
reduction-diffusion; Sm-Fe-N; nitrogenation; magnetic powder;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Magnetic materials, A global strategic business report (2008).
2 J. M. D. Coey and H. Sun, J. Magn. Mater. 87, L251 (1990).   DOI   ScienceOn
3 Y. Otani, D. P. F. Hurley, H. Sun, and J. M. D. Coey, J. Appl. Phys. 69, 5584 (1991).   DOI
4 J. Ye, F. Li, Y. Liu, S. Gao, and M. Tu, J. Rare Earth 23, 53 (2005).
5 J. J. Wyslocki, P. Pawlik, and W. Kaszuwara, J. Magn. Magn. Mater. 231, 272 (2001).
6 K. M. Zuzek, P. J. Guiness, and G. Drazic, J. Alloys Compd. 345, 214 (2002).   DOI   ScienceOn
7 K. Kobayashi and K. Ozaki, J. Jpn. Soc. Powder Metallurgy 51, 19 (2004).   DOI
8 AIST Today No. 29, http://www.aist.go.jp (2008).
9 N. Imaoka et al., J. Alloys Comp. 222, 73 (1995).   DOI   ScienceOn
10 H. Uchida et al., J. Alloys Comp. 222, 33 (1995).   DOI   ScienceOn
11 C. Cui, J. Sun, R. Wang, and Z. Liang, Superlattices and Microstructures 39, 406 (2006).   DOI   ScienceOn
12 R. E. Cech, JOM 26, 32 (1974).   DOI
13 T. Y. Liu, W. C. Chang, C. J. Chen, T. Y. Chu, and C. D. Wu, IEEE Trans. Magn. 28, 2593 (1992).   DOI   ScienceOn
14 A. Kawamoto et al., IEEE Trans. Magn. 35, 3322 (1999).   DOI   ScienceOn
15 J. C. Boareto et al., Mater. Sci. For. 534-536, 1365 (2007).
16 S. Hirosawa and H. Tomizawa, The Magentics Society of Japan 21, 160 (1997).
17 T. Ishikawa, The Japan Society Applied Electromagnetics and Mechanics 10, 287 (2002).
18 T. B. Massalski, Binary Alloy Phase Diagrams, TMS, Materials Park, OH (1990).
19 C. B. Song and T. R. Cho, Korean J. Mater. Res. 8, 720 (1998).
20 H. Kwak, J. G. Lee, and C. J. Choi, J. Korean Powd. Met. Inst. 16, 336 (2009).   과학기술학회마을   DOI   ScienceOn
21 H. Uchida et al., J. Cera. Soc. Japan 114, 896 (2006).   DOI   ScienceOn
22 J. M. D. Coey, J. F. Lawler, H. Sun, and J. E. M. Allan, J. Appl. Phys. 69, 3007 (1991).   DOI
23 J. Ye et al., J. Alloys Comp. 428, 350 (1995).
24 D. C. Jiles, Acta Mater. 51, 5907 (2003).   DOI   ScienceOn
25 T. Ishikawa, A. Kawamoto, and K. Ohmori, J. Magn. Soc. Japan 24, 1394 (2000).