Facile Synthesis of high moment α -Fe/oxideand FeCo/oxide core/shell nanoparticles using modified polyol route

Mohamed Abbas^{1,2*} and CheolGi Kim¹

¹Department of Emerging Material Science, DaeguGyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea

²Ceramics Department, National Research Centre, 12311Cairo, Egypt

*Corresponding author: cgkim@dgist.ac.kr

α-Fe/oxide and FeCo/oxide core/shellnanoparticles were synthesized by surfactantlesspolyol method followed by hydrogen reduction process. Iron oxide (Fe₃O₄) and (CoFe₂O₄) nanoparticles were first synthesized through modified Polyol process, followed by thermal annealing in presence of hydrogen (H₂) gas for 2 hours for reduction into Fe and FeConanoparticles. Polyethylene glycol (PEG) has played a key roleas solvent and reducing agent simultaneously in this synthesis process. X-ray diffraction (XRD)confirmed that the nanoparticles were Fe₃O₄ andCoFe₂O₄ before reduction processand composed ofFe₃O₄,CoFe₂O₄ andα-Fe, FeCo phases after reduction process. The structural and magnetic characterizations of the synthesized nanoparticles after oxidation by transmission electron microscope and vibration sample magnetometer measurements confirm the formation of core-shell Fe/oxideand FeCo/Oxide nanospheres. In view of the obtained high magnetic core Fe, FeCo and biocompatible oxide shell, these core-shell Fe/oxide and FeCo/oxide nanoparticles are expected to be promising materials for different bio-sensing applications.

Keywords: α-Fe/oxide,FeCo/oxide nanoparticles, Core/Shell nanostructures, polyol method, magnetic properties, immobilization.