• 제목/요약/키워드: Fe-containing

검색결과 1,042건 처리시간 0.027초

전기로 제강분진 중 고아연함량입자 성분의 마찰대전분리 회수 (Triboelectrostatic Recovery of High Zinc-Containing Particulate contents from Steel-Making Process Dust)

  • 장현주;김동수;김행구;조민영;남궁원
    • 자원리싸이클링
    • /
    • 제13권2호
    • /
    • pp.39-46
    • /
    • 2004
  • 전기로 분진은 전기로법에 의한 고철처리량의 증가와 함께 매년 그 양이 증가하고 있다. 이러한 전기로 제강분진은 매립에 의한 처리가 주를 이루어 왔으나, 최근 매립부지의 부족과 중금속 용출 등에 의한 위해성에 의해 특정폐기물로 지정되어 이에 대한 처리에 관심이 고조되고 있다. 본 연구에서는 전기로 분진의 재활용 방안과 관련하여 이의 형상 및 입도분포, 성분물질 등을 분석하였으며, 재활용 가능한 유가금속의 하나인 Zn의 마찰대전분리에 관한 기초 연구를 시행하였다. 그 결과 입자의 형상은 구형, 비구형이 집적되어 있고 그 구성 성분으로는 $ZnFe_2$$O_4$, ZnO, Fe, Zn 및 FeO등으로 구성되어 있는 것으로 관찰되었다. 특히, 회수 대상인 Zn는 그 중량이 제강분진의 15~30wt%로 그 함량이 높아 회수하여 재활용하기에 가치가 높다고 판단되었다. 전기로 제강분진내의 성분 물질들은 각각의 일함수가 다름으로 인해 대전 특성이 다르게 나타났으며, 이를 이용하여 Zn의 품위를 더 높여 제강분진을 분리할 수 있었다. 제강분진의 성분물질을 각각 단일 시료로 하여 재질이 다른 중간하전물질로부터 총 Zn의 품위를 높이는데 가장 적절한 중간하전물질을 결정하였다. 전극판의 간격, 전압의 세기, 순환처리 등에 의한 분리변수 등이 마찰대전분리의 효율에 미치는 영향을 조사하여 최적의 조건을 도출하였다. 이 조건에서 마찰대전분리 후 분진에 함유되어 있는 Zn의 함량이 50wt%를 상회하는 제강분진을 분리 회수 할 수 있었다.

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir;Ozay, Yasin;Simsek, U. Bulut;Gulsen, H. Elif;Akarsu, Ceyhun;Turabik, Meral;Unyayar, Ali;Ocakoglu, Kasim
    • Membrane and Water Treatment
    • /
    • 제8권1호
    • /
    • pp.51-71
    • /
    • 2017
  • Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.

Effect of Si on Corrosion of Fe-Cr and Fe-Cr-Ni Alloys in wet CO2 Gas

  • Nguyen, T.D.;Zhang, J.;Young, D.J.
    • Corrosion Science and Technology
    • /
    • 제14권3호
    • /
    • pp.127-131
    • /
    • 2015
  • Model alloys Fe-9Cr, Fe-20Cr and Fe-20Cr-20Ni (wt. %) with 0.1 and 0.2 % Si were exposed to $Ar-20CO_2-20H_2O$ gas at $818^{\circ}C$. The undoped alloys formed a thick iron-rich oxide scale. The additions of Si reduced scaling rates of Fe-9Cr to some extent but significantly suppressed the formation of iron oxide scales on Fe-20Cr and Fe-20Cr-20Ni. Carburisation also occurred in all undoped alloys, but not in Si-containing Fe-20Cr and Fe-20Cr-20Ni. Protection against carburisation was a result of the formation of an inner scale layer of silica.

Structure function relationships amongst the purple acid phosphatase family of binuclear metal-containing enzymes

  • Hamilton, Susan
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.5-5
    • /
    • 2003
  • The purple acid phosphatases comprise a family of binuclear metal-containing enzymes. The metal centre contains one ferric ion and one divalent metal ion. Spectroscopic studies of the monomeric, ${\sim}$36 kDa mammalian purple acid phosphatases reveal the presence of an Fe(III)Fe(II) centre in which the metals are weakly antiferromagnetically coupled, whereas the dimeric, ${\sim}$110 000 kDa plant enzymes contain either Fe(III)Zn(II) or Fe(III)Mn(II). The three dimensional structures of the red kidney bean and pig enzymes show very similar arrangements of the metal ligands but some significant differences beyond the immediate vicinity of the metals. In addition to the catalytic domain, the plant enzyme contains a second domain of unknown function. A search of sequence databases was undertaken using a sequence pattern which includes the conserved metal-binding residues in the plant and animal enzymes. The search revealed the presence in plants of a 'mammalian-type' low molecular weight purple acid phosphatase, a high molecular weight form in some fungi, and a homologue in some bacteria. The catalytic mechanism of the enzyme has been investigated with a view to understanding the marked difference in specificity between the Fe-Mn sweet potato enzyme, which exhibits highly efficient catalysis towards both activated and unactivated phosphate esters, and other PAPs, which hydrolyse only activated esters. Comparison of the active site structures of the enzymes reveal some interesting differences between them which may account for the difference. The implications fur understanding the physiological functions of the enzymes will be discussed.

  • PDF

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

분말야금법을 활용한 나노 하이브리드 구조 철-망간계 분말야금재 제조 (Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route)

  • 전종규;김정준;최현주
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.203-209
    • /
    • 2020
  • The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.

Ni-Mn-Ga-Fe 강자성 형상기억합금의 미세파괴기구 및 파괴성질 (Microfracture Mechanism and Fracture Properties of Ni-Mn-Ga-Fe Ferromagnetic Shape Memory Alloys)

  • 어광준;이정무;남덕현;이성학
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.787-796
    • /
    • 2009
  • The fracture toughness improvement of Ni-Mn-Ga-Fe ferromagnetic shape memory alloys containing ductile particles was explained by direct observation of microfracture processes using an in situ loading stage installed inside a scanning electron microscope (SEM) chamber. The Ni-Mn-Ga-Fe alloys contained a considerable amount of ductile particles in the grains after the homogenization treatment at $800{\sim}1100^{\circ}C$. ${\gamma}$ particles were coarsened and distributed homogeneously along {$\beta}$ grain boundaries as well as inside {$\beta}$ grains as the homogenization temperature increased. The in situ microfracture observation results indicated that ${\gamma}$ particles effectively acted as blocking sites of crack propagation, and provided stable crack growth that could be confirmed by the R-curve analysis. This increase in fracture resistance with increasing crack length improved overall fracture properties of the alloys containing ${\gamma}$ particles.

水酸化鐵 懸濁液에서 空氣酸化에 의한 중금속이온의 Ferrite 생성에 관한 연구 (A Study of Ferrite Formation by Aerial Oxidation of Fe$(OH)_2$ Suspension of Aqueous Solution Containing Heave Metal Ions)

  • Lee, Sung Ho;Hyun, Yong Bum;Kim, Soo Saeng
    • 한국환경보건학회지
    • /
    • 제12권1호
    • /
    • pp.1-14
    • /
    • 1986
  • This investigation was carried out on the study of Ferrite formation by aerial oxidation of Fe $(OH)_2$ suspension of aqueous solution containing heavy metal ions. In this study the optimum reactionary condition of the Ferrite formation in Batch reactor wa studied by aerial oxidation which are subjected to various reaction time and temperature, under the different kinds of R(2NaOH/$FeSO_4$) Values, pH, Air flow rate, and $Fe^2+/M^2+$ mole ratio. The optimum condition for the Ferrite formation in Batch reactor was such that residence Time was 90 min., Temperature $65{\circ}$C, pH 11.0, Air flow rate 2.0l/min and $Fe^{2+}/M^{2+}$ mole ratio 4.0, which was observed by X-Ray diffraction analysis. The relation R-value, pH and ORP affecting the formation of Ferrite is that the jump step in pH 11.0, when a amount of NaOH is added, is steady state to the formation of Ferrite. Effect of R-value of $FeSO_4$ and $FeCl_2$ on the formation of Ferrite in different from each other the optimum condition of the in different from each other the optimum condition of the $FeCl_2$ is R-value 0.7, pH 11.0 and the $FeSO_4$ R-value 1.2, pH 11.0.

  • PDF

주파수 특성에 의한 ${\alpha}-Fe_2O_3$ Thermistor의 계면준위 해석 (A Study on The Grain Boundary State of ${\alpha}-Fe_2O_3$ Thermistor by Frequency Properties)

  • 홍형기;강희복;김봉희;최복길;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.227-230
    • /
    • 1990
  • The addition of titanium has come to produce an increase in the conductivity of ${\alpha}-Fe_2O_3$ and has been shown NTC ( negative temperature coefficient ) characteristics. Titanium enters the ${\alpha}-Fe_2O_3$ lattice substitutionally as $Ti^{4+}$,thus producing an $Fe^{2+}$ and maintaining the average charge per cation at three. Thus the $Fe^{2+}$ acts as a donor center with respect to the surrounding $Fe^{3+}$ ions. The sintering temperature, compacting pressure and sintering tire have an effect on the electrical properties. C-V and other properties have been measured on polycrystalline samples of ${\alpha}-Fe_2O_3$ containing small deviations from stoichiometry and small amounts of added Titanium. This measurment was made in the course of an investigation of the NTC mechanism in oxides whose cations have a partially filled d-level. C-V and frequency properties have been applied to the measurement of the trap barrier properties at the grain boundary. The double Schottky barrier at the grain boundary is the major cause of the NTC mechanism in NTC thermistor of ${\alpha}-Fe_2O_3$ containing N-type impurity.

  • PDF

Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향 (Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds)

  • 최한철
    • 한국표면공학회지
    • /
    • 제37권2호
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.