• Title/Summary/Keyword: Fe-based alloys

Search Result 219, Processing Time 0.02 seconds

Measurement of Volume Fraction of ${\varepsilon}$ Martensite using Specific Volume Difference in Fe-Mn Based Alloys (Fe-Mn 계 합금에서 비부피 차를 이용한 ${\varepsilon}$ 마르텐사이트의 부피분율 측정)

  • Jee, K.K.;Han, J.H.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.211-215
    • /
    • 2003
  • In this work, a new way of measuring the volume fraction of e martensite in Fe-based alloys has been proposed. Since the specific volume of ${\varepsilon}$ martensite, depending on alloy composition, is smaller than that of austenite i.e ${\gamma}$ phase, volume expansion takes place during ${\varepsilon}{\rightarrow}{\gamma}$ reverse transformation. As the amount of the volume expansion is proportional to the product of specific volume difference times the volume fraction of ${\varepsilon}$ martensite, the volume fraction of ${\varepsilon}$ martensite can be calculated by measuring the volume expansion and the specific volume difference. Such a relationship was confirmed in Fe-21Mn and Fe-32Mn-6Si alloys which undergo ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation on cooling and by cold rolling, respectively. It was also found that the former has isotropic ${\varepsilon}$ martensite while the latter has anisotropic ${\varepsilon}$ martensite.

A Study on the Optimization of Metalloid Contents of Fe-Si-B-C Based Amorphous Soft Magnetic Materials Using Artificial Intelligence Method

  • Young-Sin Choi;Do-Hun Kwon;Min-Woo Lee;Eun-Ji Cha;Junhyup Jeon;Seok-Jae Lee;Jongryoul Kim;Hwi-Jun Kim
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1459-1463
    • /
    • 2022
  • The soft magnetic properties of Fe-based amorphous alloys can be controlled by their compositions through alloy design. Experimental data on these alloys show some discrepancy, however, with predicted values. For further improvement of the soft magnetic properties, machine learning processes such as random forest regression, k-nearest neighbors regression and support vector regression can be helpful to optimize the composition. In this study, the random forest regression method was used to find the optimum compositions of Fe-Si-B-C alloys. As a result, the lowest coercivity was observed in Fe80.5Si3.63B13.54C2.33 at.% and the highest saturation magnetization was obtained Fe81.83Si3.63B12.63C1.91 at.% with R2 values of 0.74 and 0.878, respectively.

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.

NOVEL TECHNIQUE TO PRODUCE HYBRID P/M COMPONENTS USING DISSIMILAR FERROUS ALLOYS

  • MIN CHUL OH;HYUNJOO SEOK;YEONGCHEOL JO;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.613-616
    • /
    • 2019
  • The objective of the present research is to develop the novel multi-compaction technology to produce hybrid structure in powder metallurgy (P/M) components using dissimilar Fe-based alloys. Two distinct powder alloys with different compositions were are used in this study: Fe-Cr-Mo-C pre-alloyed powder for high strength and Fe-Cu-C mixed powder for enhanced machinability and lower material cost. Initially, Fe-Cu-C was pre-compacted using a bar-shaped die with lower compaction pressure. The green compact of Fe-Cu-C alloy was inserted into a die residing a half of the die, and another half of the die was filled with the Fe-Cr-Mo-C powder. Then they subsequently underwent re-compaction with higher pressure. The final compact was sintered at 1120℃ for 60 min. In order to determine the mechanical behavior, transverse rupture strength (TRS) and Vickers hardness of sintered materials were measured and correlated with density variations. The microstructure was characterized using optical microscope and scanning electron microscope to investigate the interfacial characteristics between dissimilar P/M alloys.

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

Magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) Alloys: A First-principles Study (B2 구조 FeX(X = Al, Si, Ni, Ga, Ge, Sn) 합금의 자기변형에 대한 제일원리계산)

  • Lee, Sunchul;Odkhuu, Dorj;Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.117-121
    • /
    • 2013
  • In this study we investigated magnetism and magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) using a first-principles method, in order to survey the possibility of developing a transition metal based magnetostriction material. The Full-potential Linearized Augmented Plane Wave method was employed for solving the Kohn-Sham equation within the generalized gradient approximation for exchange-correlation interaction between electrons. FeX alloys are stabilized in ferromagnetic states except for the FeSi and FeGe alloys. Magnetostrcition coefficients of FeX (X = Al, Ni, Ga, and Sn) were calculated to be -5, +6, -84, -522ppm, respectively. It is noteworthy that the magnetostriction coefficient (-522ppm) of FeSn is larger than that (+400ppm) of Gafenol.

Magnetic Properties of ${\alpha}-Fe$ Based Nd-Fe-B Melt-Spun Alloys (${\alpha}-Fe$ 기 Nd-Fe-B 급속응고합금의 자기특성)

  • 조용수;김윤배;박우식;김희태;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.122-125
    • /
    • 1994
  • The magnetic properties of Nd-Fe-B alloys of containing 4 at.% Nd have been studied for the development of new type rare-earth magnets. The amorphous phase of a melt-spun $Nd_{4}Fe_{85.5}B_{10.5}$ alloy is transformed into the phases which have a small amount of $Nd_{2}Fe_{14}B_{1}$ in ${\alpha}-Fe$ matrix by annealing above their crystallization temperature. The addition of Mo, Nb, V or Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ alloy results in the reduction of grain size and the sub¬sequent improvement of the coercivity. The coercivity of $Nd_{4}Fe_{82}B_{10}M_{3}Cu_{1}$(M = Mo, Nb, V) alloys increases in the order of M = V < Nb < Mo and shows the highest value of 2.7 kOe when M = Mo. On the other hand, the rem¬anence of these alloys shows the opposite trend and the rn>st improved value of 1.35 T is observed when M = V.

  • PDF

High Temperature Creep Behavior in Al-Mg(Zn)-Fe Alloys

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2010
  • Creep tests were conducted under a condition of constant stress on two aluminum-based alloys containing particles: Al-5% Mg-0.25% Fe and Al-5% Zn-0.22% Fe. The role of grain boundary sliding was examined in the plane of the surface using a square grid printed on the surface by carbon deposition and perpendicular to the surface using two-beam interferometry. Estimates of the contribution of grain boundary sliding to the total strain, $\varepsilon_{gbs}/\varepsilon_t$ reveal two trends; (i) the sliding contribution is consistently higher in the Al-Mg-Fe alloy, and (ii) the sliding contribution is essentially independent of strain in the Al-Mg-Fe alloy, but it shows a significant decrease with increasing strain in the Al-Zn-Fe alloy. Sliding is inhibited by the presence of particles and its contributions to the total strain are low. This inhibition is attributed to the interaction between the grain boundary dislocations responsible for sliding and particles in the boundaries.

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.