• 제목/요약/키워드: Fe-based alloys

검색결과 210건 처리시간 0.024초

Effects of Flux Treatment on the Glass Forming Ability and Magnetic Properties of Fe-based Ternary Amorphous Alloys

  • Zuo, Mingqing;Yi, Seonghoon
    • 한국주조공학회지
    • /
    • 제40권4호
    • /
    • pp.113-117
    • /
    • 2020
  • A series of Fe-P-B and Fe-Si-B amorphous alloys with high Fe contents exceeding 90 wt.% was successfully prepared by combining flux treatment and melt-spinning technique. The effects of Fe content and the flux treatment on the thermal and magnetic properties of amorphous alloys were studied. The glass-forming ability and the thermal stability of amorphous ribbons can be improved by a flux treatment, revealing the effective removal of heterogeneous nucleation sites in the ribbons through the flux treatment. It was found that Fe-Si-B ribbons exhibit higher saturation magnetization levels than Fe-P-B ribbons.

고전도성 부품용 Al-Fe-Zn-Cu합금의 물성 및 주조성 (Properties and Casting Capabilities of Al-Fe-Zn-Cu Alloys for High Conductivity Parts)

  • 윤호섭;김정민;박준식;김기태;고세현
    • 한국주조공학회지
    • /
    • 제33권6호
    • /
    • pp.242-247
    • /
    • 2013
  • The most widely utilized commercial, aluminum-casting alloys are based on an aluminum-silicon system due to its excellent casting, and good mechanical, properties. Unfortunately, these Al-Si based alloys are inherently poor energy conductors; compared to pure aluminum, because of their high silicon content. This means that they are not suitable for applications demanding high eletrical or thermal conductivity. Therefore, efforts are currently being made to develop new, highly-conductive aluminum-casting alloys containing no silicon. In this research, a number of properties; including potential for castability, were investigated for a number of Al-Fe-Zn-Cu alloys with varying Cu content. As the copper content was increased, the tensile strength of Al-Fe-Zn-Cu alloy tended to increase gradually, while the electrical conductivity was slightly reduced. Fluidity was found to be lower in high-Cu alloys, and susceptibility to hot-cracking was generally high in all the alloys investigated.

Plastic Deformation Behavior of Sintered Fe-Based Alloys for Light-Weight Automotive Components

  • Kang, Yohan;Yoon, Suchul;Kim, Minwook;Lee, Seok-Jae
    • Applied Science and Convergence Technology
    • /
    • 제23권3호
    • /
    • pp.151-159
    • /
    • 2014
  • We investigated the effects of the chemical composition and the relative density on the plastic deformation behavior of sintered Fe-based alloys by means of compressive tests. Overall compressive stresses increased as the amount of alloying elements and the relative density were respectively increased. Addition of alloying elements except for Mo increased the yield stress regardless of the relative density. The relationship between the effects of the chemical composition and the relative density and the mean rate of the stress increase was analyzed. A constitutive equation based on the Ludwik equation with the regressed parameters was proposed to predict the compressive true stress-true strain curves of the sintered Fe-based alloys. The K and n values used in the proposed equation were regressed as a function of the alloying elements and the relative density based on the individual K and n values. The plastic deformation behavior predicted using the proposed constitutive equation showed reliable accuracy compared with experimental data.

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • 제13권2호
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Zr, Zircaloy-4, Zr-Nb 합금의 미세조직 및 재결정 거동에 관한 연구 (A Study on the Recrystallization Behavior and Microstructure of Zr, Zircaloy-4 and Zr-Nb Alloys)

  • 이명호;최병권;백종혁;정용환
    • 한국재료학회지
    • /
    • 제10권6호
    • /
    • pp.422-429
    • /
    • 2000
  • Zr 합금의 재결정 거동 및 미세조직 변화에 미치는 열처리 온도 및 시간의 영향의 조사하기위하여 순수 Zr과 Zircaloy-4, Zr-0.88n-0.4Nb-0.4Fe-0.2Cu, Zr-1Nb 합금을 냉간가공한 후 $400^{\circ}C$~$900^{\circ}C$에서 각각 30분~5000분 동안 열처리하였다. 열처리 온도에 따른 Zr합금의 경도, 미세조직 및 석출물 특성을 미소경도기, 광학 현미경 및 투과 전자 현미경을 이용하여 조사하였다. 냉간 가공채는 $400^{\circ}C$에서 $600^{\circ}C$ 범위에서 재결정이 일어났는 데 합금원소가 증가함에 따라 재결정온도가 상승했고 결정립 성장이 억제되었다. 그리고 합금원소 증가에 따른 경도증가 영향이 재결정 이후에도 지속되었다. 열처리 온도 및 시간에 비례하여 재결정 이후 결정립 크기는 증가한 반면 경도변화는 상대적으로 미미하였다. Fe나 Cu가 Zr에 첨가될 경우 회복중 경도증가가 수반되는데, 이는 회복중 생성과 관련이 있는 것으로 사료된다.

  • PDF

$\alpha$-(Fe, Co)기 Nd-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 자기특성에 미치는 Nd의 영향 (Influence of Nd Content on Magnetic Properties of Nanocrystalline $\alpha$-(Fe, Co)-Based Nd-(Fe, Co)-B-Nb-Cu Alloys)

  • 조덕호;조용수;김택기;송민석;김윤배
    • 한국자기학회지
    • /
    • 제9권3호
    • /
    • pp.154-158
    • /
    • 1999
  • Nd 함유량을 2~6at.%로 변화시킨 $\alpha$-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 미세조직 및 자기특성을 조사하였다. 급속응고된 Ndx(Fe0.9Co0.1)90-xB6Nb3Cu1(2$\leq$x$\leq$6, 1at.% 간격) 합금은 x=3 이상에서 비정질상으로 제조되었다. 제조된 비정질합금은 열처리에 의해 $\alpha$-(Fe, Co) 및 Nd2(Fe, Co)14B1상으로 구성된 초미세결정립합금으로 결정화 되었다. 최적열처리조건에서 잔류자화는 Nd의 증가에 따라 감소하며, x=3에서 1.55T로 최대 값을 나타내었다. 보자력은 Nd함유량 증가에 따라 직선적으로 증가하여 x=6에서 4.6kOe이었으며, 최대에너지적은 10.6MGOe였다.

  • PDF

Microstructural Change and Magnetic Properties of Nanocrystalline Fe-Si-B-Nb-Cu Based Alloys Containing Minor Elements

  • Nam, Seul-Ki;Moon, Sun-Gyu;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.327-332
    • /
    • 2014
  • The effect of minor element additions (Ca, Al) on microstructural change and magnetic properties of Fe-Nb-Cu-Si-B alloy has been investigated, in this paper. The Fe-Si-B-Nb-Cu(-Ca-Al) alloys were prepared by arc melting in argon gas atmosphere. The alloy ribbons were fabricated by melt-spinning, and heat-treated under a nitrogen atmosphere at $520-570^{\circ}C$ for 1 h. The soft magnetic properties of the ribbon core were analyzed using the AC B-H meter. A differential scanning calorimetry (DSC) was used to examine the crystallization behavior of the amorphous alloy ribbon. The microstructure was observed by X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM). The addition of Ca increased the electrical resistivity to reduce the eddy current loss. And the addition of Al decreased the intrinsic magnetocrystalline anisotropy $K_1$ resulting in the increased permeability. The reduction in the size of the ${\alpha}$-Fe precipitates was observed in the alloys containing of Ca and Al. Based on the results, it can be concluded that the additions of Ca and Al notably improved the soft magnetic properties such as permeability, coercivity and core loss in the Fe-Nb-Cu-Si-B base nanocrystalline alloys.

Temperature Dependence of Magnetization of Amorphous TM_70 Cr_5 Si_10 B_15 (TM=Fe, Co, Ni) Alloys

  • Kim, Kyeong-Sup;Yu, Seong-Cho;Lim, Woo-Young;Myuong, Wha-Nam
    • Journal of Magnetics
    • /
    • 제2권4호
    • /
    • pp.135-137
    • /
    • 1997
  • We report the salient features of the magnetic properties of amorphous TM70Cr5Si10B15(TM=Fe, Co, Ni) alloys. The temperature dependence of magnetization for amorphous ribbons were measured by a SQUID and a VSM from 5 K to 700 K under an external field of 10 kOe. Except TM70Cr5Si10B15 that shows a paramagnetic behaviour, both Fe and Co based amorphous alloys show a typical ferromagnetic thermo-magnetization curves. For these two ferromagnetic alloys, the saturation magnetization in the temperature range from 5 K to about 0.4 Tc can be descrived by the Bloch relation, Ms (T)=Ms(0) [1-BT3/2-CT5/2]. The spin wave stiffness constants and the range of exchange interaction were analyzed from the magnetization behaviour. The variation of the magnetic properties are discussed and compared with the composition of the alloys.

  • PDF

Fe-Mn 계 합금에서 비부피 차를 이용한 ${\varepsilon}$ 마르텐사이트의 부피분율 측정 (Measurement of Volume Fraction of ${\varepsilon}$ Martensite using Specific Volume Difference in Fe-Mn Based Alloys)

  • 지광구;한준현;장우양
    • 열처리공학회지
    • /
    • 제16권4호
    • /
    • pp.211-215
    • /
    • 2003
  • In this work, a new way of measuring the volume fraction of e martensite in Fe-based alloys has been proposed. Since the specific volume of ${\varepsilon}$ martensite, depending on alloy composition, is smaller than that of austenite i.e ${\gamma}$ phase, volume expansion takes place during ${\varepsilon}{\rightarrow}{\gamma}$ reverse transformation. As the amount of the volume expansion is proportional to the product of specific volume difference times the volume fraction of ${\varepsilon}$ martensite, the volume fraction of ${\varepsilon}$ martensite can be calculated by measuring the volume expansion and the specific volume difference. Such a relationship was confirmed in Fe-21Mn and Fe-32Mn-6Si alloys which undergo ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation on cooling and by cold rolling, respectively. It was also found that the former has isotropic ${\varepsilon}$ martensite while the latter has anisotropic ${\varepsilon}$ martensite.