• Title/Summary/Keyword: Fe-Cr steel

Search Result 282, Processing Time 0.022 seconds

A Study on Microstructure and Mechanical Properties of TiB2-steel Composite Fabricated by Gas Pressure Infiltration Process (가스압 함침 공정으로 제조된 TiB2-steel 금속복합재료의 미세조직 및 기계적 물성에 관한 연구)

  • Lee, Jihye;Lee, Donghyun;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Junghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.248-254
    • /
    • 2022
  • In this study, TiB2-steel composite with high-fractional TiB2 reinforcement was fabricated by gas pressure infiltration process and the microstructure analysis and compressive strength and hardness were evaluated. To elucidate the correlation between microstructure and mechanical properties for fabricated composite, after the compression test of TiB2-steel composite, the fracture surface was analyzed and the fracture behavior on compression test was predicted. As a result of the compression fracture surface analysis, interfacial failure trace between the steel matrix and the reinforcement was observed, and the interface between the steel matrix and the reinforcement was analyzed using TEM. From the result of microstructure analysis on the fabricated composite, it was confirmed that, in addition to TiB2 reinforcement and steel matrix, TiC phase and coarse (Fe,M)2B (M=Cr,Mn) phase were formed. Throughout the thermodynamic calculation, it was confirmed that TiC and (Fe,M)2B can be formed as a stable phase under the process condition. The fabricated TiB2-steel composite had a significantly increased hardness, and the compressive strength and Young's modulus were improved by 3.07 times and 1.95 times, respectively, compared to steel matrix. It seems that the coarse (Fe,M)2B (M=Cr,Mn) phase formed throughout the composite causes the deterioration of mechanical properties, and by controlling the formation of the (Fe,M)2B (M=Cr,Mn) phase, it is judged that the mechanical properties of the TiB2-steel composite can be further improved.

Formation Behavior of Passive State Film on Stainless Steel for Metallic Ion Concentration in Electropolishing Solution (전해 연마액 금속 이온 농도에 따른 스테인리스 스틸의 부동태 피막 형성 거동)

  • Oh, Jong Su;Kang, Eun-Young;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.

Stainless Steel Surface Oxidized in Strong Oxidizing Solution

  • Kyoung-Chul Lee;Kyoung-Hee Ham;Woon-Sun Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.520-524
    • /
    • 1991
  • Stainless steel 304 2B and BA are oxidized in 2.5 M $CrO_3/$ 5.0 M $H_2SO_4$ solution, and elemental composition and oxidized state of the surface region is analyzed as a function of the surface depth using X-ray photoelectron spectroscopy. It is found that Fe and Cr are preferentially oxidized and diffuse outward following the oxidation. Element Ni, the third major component of the steel is not oxidized and remains deep under the surface. It is also found that the oxidized Fe dissolves considerably into the solution thereby enriching the gas-oxide interface with Cr.

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai;Masahiro Furuya;Hidemasa Yamano
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.902-907
    • /
    • 2023
  • To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

Sliding wear mechanism of the high-nitrogen austenitic 18Cr-18Mn02Mo-0.9N steel (고질소 Fe-18Cr-18Mn-2Mo-0.9N강의 미끄럼 마멸 기구)

  • Kim S. D.;Kim S. J.;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.105-108
    • /
    • 2005
  • Sliding wear mechanism of a high nitrogen austenitic 18Cr-18Mn-2Mo-0.9N steel has been investigated. Dry sliding wear tests of the steel were carried out at various loads of 1N-10N under a constant sliding speed condition of 0.15m/s against AISI 52100 bearing steel balls. Solution $(1050^{\circ}C)$ and isothermal aging $(900^{\circ}C)$ heat treatments were performed on the steel and the effect of the heat treatments on the wear were investigated. Wear rates of the solution-treated steel specimen remained low until 5N, and then increased abruptly at loads above 5N. The rates of isothermally aged specimens were low and increased gradually with the applied load. Worn surfaces, their cross sections, and wear debris of the steel specimens were examined with a scanning electron microscopy. Phases of the heat-treated specimen and the wear debris were identified using XRD. Phases transformed underneath the sliding track during the wear were investigated and analyzed using TEM. Effects of the phase transformation during the wear and $Cr_2N$ precipitates formed during the isothermal aging on the wear of the austenitic steel were discussed.

  • PDF

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Sintering Characteristics of 304 and 316L Stainless Steel Fine Powder (304 및 316L 스테인레스강 미립 분말의 소결 특성)

  • Lim, Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1555-1559
    • /
    • 2008
  • The characteristics of 304 (Fe-18%Cr-12%Ni) and 316L (Fe-18%Cr-13%Ni-2.4%Mo) austenite stainless-steel compacts sintered with $5{\sim}15{\mu}m$ powder were investigated and the results led to the following conclusions: (1) When the sintering time was 3.6ks, the relative density of sintered compacts was $95{\sim}98%$, regardless of any other sintering condition. (2) When a vacuum sintering was done with $5{\mu}m$ stainless steel powders, almost fully-dense sintered compacts were obtained at is = 57.6ks. (3) The amount of residual oxygen in 304 and 316L sintered compacts was $0.5{\sim}0.6%$, regardless of sintering atmosphere. (4) The amount of residual oxygen in the vacuum sintered compact decreased more than 0.3 % due to addition of carbon powder, thereby reducing the formation of oxides. Furthermore, the addition of carbon improved the density of sintered compact, which enables us to make a fully-dense high performance sintered compact.

Fracture Behaviors of Oxide Scales on the Metallic Substrate and the Influence of Oxide Scales for the Strength of materials (산화피막의 파괴거동 및 산화피막이 소지금속의 기계적 강도에 미치는 영향)

  • ;;T. Narita
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.187-190
    • /
    • 2003
  • An Fe-25Cr steel was oxidized in Ar at 973K with or without external stesses of 30~35Mpa. A 0.1 ${\mu}{\textrm}{m}$ thick Cr$_2$O$_3$scales was formed during pre-treatment in Ar. Cracking on the oxides scales commenced at the alloy grain boundary by the end of second creep stage, arrayed almost perpendicular to the direction of the tensile directions. On the contrary, a scale formed in $N_2$-0.1%SO$_2$shows poor adherence on the metal substrate. In this case, the strength of materials is much lower than in Ar

  • PDF

The Oxidized Surface of Stainless Steel 304 Analyzed with X-ray Photoelectron Spectroscopy (광전자 분광법으로 분석한 스테인레스 강 304의 산화 표면)

  • 이경철;함경희;안운선
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.144-150
    • /
    • 1991
  • The stainless steel 304 oxidized at $70^{\circ}C$ in 2.5M CrO3/5.0M H2SO4 solution and at $200^{\circ}C$ , $300^{\circ}C$, and $400^{\circ}C$ in the air are analyzed with X-ray Photoelectron Spectroscopy (XPS) to obtain depth composition profile of the surface region. It is confirmed that the surface region has a quite different composition from that of the bulk. This is due to a difference in the outward diffusion rates of the oxidized species in the surface region. The order of diffusion rates is Fe > Cr > Ni in the experimental temperature range. In spite of the inferior rate of diffusion, Cr is enriched in the surface when it is oxidized in the CrO3/H2SO4 solution. This is due to preferential dissolution of oxidized Fe.

  • PDF

The influence of spraying conditions to the coating layer properties of Fe-Cr-Ni-Mo-Si-B alloy using the HVOF (HVOF를 이용한 Fe-Cr-Ni-Mo-Si-B계 고성능 합금 용사층의 특성에 미치는 용사조건의 영향)

  • 권기봉;조대형;장영권;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This study was performed to investigate the influence of spraying condition to the coating layer properties of Fe-Cr-Ni-Mo-Si-B alloy using the HVOF. The investigations, such as thickness measurement, surface roughness, hardness, friction coefficient, resistance of corrosion were carried out. Matrix is prepared by gritting and coating layer is made of Fe-Cr-Ni-Mo-Si-B alloy powder using HVOF. Alumina gritting layers are superior to steel gritting layers. The less spaying distance, the more coating layer properties confirmed. The optimum spraying condition, in this study, was proved as 13inch spraying distance with feed rate 350rpm (78g/min).