• 제목/요약/키워드: Fe-Cr alloy

검색결과 340건 처리시간 0.031초

Stress Corrosion Cracking of Alloy 600 and Alloy 690 in Caustic Solution

  • Kim, Hong Pyo;Lim, Yun Soo;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • 제2권2호
    • /
    • pp.82-87
    • /
    • 2003
  • Stress corrosion cracking of Alloy 600 and Alloy 690 has been studied with a C-ring specimen in 1%, 10% and 40% NaOH at $315^{\circ}C$. SCC test was performed at 200 mV above corrosion potential. Initial stress on the apex of C-ring specimen was varied from 300 MPa to 565 MPa. Materials were heat treated at various temperatures. SCC resistance of Ni-$_\chi$Cr-10Fe alloy increased as the Cr content of the alloy increased if the density of an intergranular carbide were comparable. SCC resistance of Alloy 600 increased in caustic solution as the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary increased. Low temperature mill annealed Alloy 600 with small grain size and without intergranular carbide was most susceptible to SCC. TT Alloy 690 was most resistant to SCC due to the high value of the product of coverage of an intergranular carbide in grain boundary, intergranular carbide thickness and Cr concentration at grain boundary. Dependency of SCC rate on stress and NaOH concentration was obtained.

ADC12 다이캐스팅 합금의 미세조직 및 기계적 특성에 미치는 개량 원소 첨가의 영향 (Effect of Alloying Element Addition on the Microstructure and Wear Properties of Die-casting ADC12 Alloy)

  • 강연지;윤상일;김동현;이기안
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.34-42
    • /
    • 2019
  • In this study, various alloying elements (Cr, Sr, Ca, Cd) were added to improve the mechanical properties of ADC12 fabricated by a die casting process. The effect of alloying elements on the microstructure and mechanical properties were investigated. The phase analysis results of the modified ADC12 alloy with conventional ADC12 alloy, showed the similar characteristics of Al matrix, Si phase, $CuAl_2$ phase and the Fe intermetallic phase. As a result of the microstructure observation, the secondary dendrite arm spacing (SDAS) was shown to have decreased after the addition of the alloying elements. The eutectic Si phase, which existed as flake form in the conventional ADC12 alloy, was modified finely as a fiber form in the modified ADC12 alloy. It was observed that the $CuAl_2$ phase as the strengthening phase was relatively finely distributed in the modified ADC12 alloy. The Fe intermetallic appeared as a Chinese script shaped $Al_6$ (Mn,Fe) which is detrimental to mechanical properties in conventional ADC12 alloy. On the other hand, in the modified ADC12 alloy, polyhedral ${\alpha}-Al_{15}Si_2$ $(Fe,Mn,Cr)_3$ was observed. The tensile properties were improved in the modified ADC12 alloy. The yield strength and tensile strength increased by 12.4% and 10.0%, respectively, in the modified ADC12 alloy, and the elongation was also seen to have been increased. As a result of the pin on disk wear test, the wear resistance properties were also improved by up to about 7% in the modified ADC12 alloy. It is noted that the wear deformation microstructures were also observed, and it was found that the fine eutectic Si and strengthening phases greatly improved abrasion resistance.

소결 13Cr-1.5Nb-Fe 합금의 교류 자기 특성 (Fabrication of 13Cr-1.5Nb-Fe Alloy Powder and AC Magnetic Properties of the Sintered Magnetic Core)

  • 오환수;김택기;조용수
    • 한국자기학회지
    • /
    • 제10권1호
    • /
    • pp.11-15
    • /
    • 2000
  • 수분사법으로 제조된 13Cr-1.5Nb-Fe 합금분말을 수소분위기 하에서 환원처리 하였다. 분말특성이 조사된 환원분말을 이용하여 자기코아를 제작한 후 약 $10^{-5}$Torr의 진공분위기에서 소결하였다. 자기코아의 교류자기특성을 조사하기 위하여 투자율과 자기손실을 조사하였다. 환원분말의 입도분포는 약 70$\mu\textrm{m}$에서 50% vol.을 나타내며, 포화자화 값은 약160 emu/g이었다. 10ton/$\textrm{cm}^2$ 성형압력, 1,20$0^{\circ}C$ 소결온도에서 제작된 자기코아의 교류투자율은 주파수, f=1 kHz, 인가자장, H$_{a}$ =5 Oe에서 400이다. 또한 동조건에서 제작된 자기코아의 교류자기이력손실은 유도자화, B$_{m}$ =80G에서 0.12mW/cc이다.

  • PDF

증기발생기 전열관 재료의 2차측 응력부식균열 민감성 (Outer Diameter Stress Corrosion Cracking Susceptibility of Steam Generator Tubing Materials)

  • 김동진;김현욱;김홍표
    • Corrosion Science and Technology
    • /
    • 제10권4호
    • /
    • pp.118-124
    • /
    • 2011
  • Alloy 600 (Ni 75 wt%, Cr 15 wt%, Fe 10 wt%) as a heat exchanger tube of the steam generator (SG) in nuclear power plants (NPP) has been degraded by various corrosion mechanism during the long-term operation. Especially lead (Pb) is known to be one of the most deleterious species in the secondary system causing outer diameter stress corrosion cracking (ODSCC). Oxide formation and breakdown is requisite for SCC initiation and propagation. Therefore it is expected that a property change of the oxide formed on SG tubing materials by lead addition into a solution is closely related to PbSCC. In the present work, the SCC susceptibility was assessed by using a slow strain rate test (SSRT) in caustic solutions with and without lead for Alloy 600 and Alloy 690 (Ni 60 wt%, Cr 30 wt%, Fe 10 wt%) used as an alternative of Alloy 600 because of outstanding superiority to SCC. The results were discussed in view of the oxide property formed on Alloy 600 and Alloy 690. The oxides formed on Alloy 600 and Alloy 690 in aqueous solutions with and without lead were examined by using a transmission electron microscopy (TEM), equipped with an energy dispersive x-ray spectroscopy (EDXS).