• 제목/요약/키워드: Fe-C-N alloy

검색결과 93건 처리시간 0.023초

플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구 (Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided)

  • 조효석;노용식;신호강;이상윤
    • 열처리공학회지
    • /
    • 제5권4호
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF

AZ31 합금 성형에서의 열전달을 고려한 유한요소해석 (Finite element analysis considering heat transfer in sheet metal forming of AZ31)

  • 김민철;이영선;권용남;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.73-77
    • /
    • 2005
  • In this work, the influences of tool temperature on the formability of AZ31 sheet material in warm deep drawing processes of square cup were investigated. Deep drawing tests under different tool temperatures for magnesium alloy sheet at elevated temperature $250^{\circ}C$, where AZ31 sheet shows a good formability, and FE analyses were carried out. The successfully formed part without any defects was obtained when temperature of tool was over $100^{\circ}C$ while the fracture was occurred at the corner of the square cup below $100^{\circ}C$. It is shown that lower temperature of tool than that of magnesium sheet causes the temperature drop of the material by heat transfer and thus Interrupts the dynamic recrystallization of it. Therefore, in order to obtain successful part of magnesium alloys, it is necessary that the tool temperature is limited to the same or slightly lower temperature than sheet material.

  • PDF

Modification of Low Alloyed Steels by Manganese Additions

  • Sicre-Artalejo, J.;Campos, M.;Torralba, JM
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.933-934
    • /
    • 2006
  • The present study examines the sintering behaviour and effect of manganese addition both mechanically-blended and mechanically alloyed on Cr-Mo low alloyed steels to enhance the mechanical properties. Mn sublimation during sintering provides some specific phenomena which facilitate the sintering of alloying elements with high oxygen affinity. First step is the optimization of milling time to attain a master alloy with 50% of Mn which is diluted in Fe-1.5Cr-0.2Mo water atomized prealloyed powder by normal mixing. These mixtures are pressed to a green density of $7.1g/cm^3$ and sintered at $1120^{\circ}C$ in $90N_2-10H_2$ atmosphere.

  • PDF

사출성형법에 의해 제작된 Fe-2%Ni연자성 소결체의 소결 및 자기적 특성 (Densification Behavior and Magnetic Properties of Fe-2%Ni Sintered Compact Fabricated by Metal Injection Molding)

  • 임태환
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.278-283
    • /
    • 2019
  • 미립의 3종류 Fe-2%Ni합금 분말(N사), Fe+2%Ni혼합 분말(B사 및 S사)을 항절력 시험편 및 링(ring)형상의 시험편으로 사출 성형, 탈지, 소결 조건(환원 및 소결 분위기, 소결 온도, 소결시간, 냉각속도)을 변화시켜 소결체를 제작하였다. 얻어진 소결체에 대하여는 소결체의 밀도 및 자기적 특성을 평가하여 다음과 같은 결론을 얻었다. (1) 탈지한 각 성형체를 수소 중에서 $1123K{\times}3.6ks$유지하고, Ar중에서 $1623K{\times}14.4ks$로 소결할 경우 N(사), B(사), S(사)소결체의 밀도는 각각 96, 99, 99%로 나타났고, 소결체의 산소 탄소량은 각각 0.0041%O, 0.0006%C, 0.0027%O, 0.0022%C, 0.160%O, 0.0026%C의 값을 나타내었다. (2) 위에의 결과로부터 보면 B(사)의 소결체가 가장 우수한 결과를 나타내므로 B(사)의 Ar중 소결체에 대하여 자기적 특성을 조사한 결과, $B_{25}=14.3KG$, $B_r=7.75KG$, $H_c=2.1Oe$로 용해해서 만든 제품의 값에는 미치지 못했다. (3) B(사)의 성형체를 Ar가스 중에서 $1673K{\times}14.4ks$로 소결 후 1123K까지는 $0.83Ks^{-1}$로 냉각하고 1123K부터 실온까지는 $0.083Ks^{-1}$로 냉각한 소결체의 자기적 특성은 $B_{25}=14.8KG$, $B_r=8.3KG$, $H_c=1.3Oe$로 용해해서 만든 제품의 값과 거의 동일한 값을 얻었다. 이상, 소결 조건 제어(환원조건, 소결분위기, 소결온도, 소결시간) 및 냉각속도 제어를 통한 소결 공정으로 목적하는 연자성 재료특성을 얻었다.

Effects of Sigma ($\sigma$) Phase on the Pitting Corrosion of 25% Cr Duplex Stainless Steel; Investigations by means of Electrochemical Noise Measurement

  • Park, Chan-Jin;Kwon, Hyuk-Sang;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.18-25
    • /
    • 2003
  • Effects of the precipitation of $\sigma$ phase on the metastable pitting as a precursor of stable pitting corrosion and also on the progress of stale pitting of the 25Cr-7Ni-3Mo-0.25N duplex stainless steel were investigated in chloride solution. Electrochemical potential and current noises of the alloy were measured in 10 % ferric chloride solution ($FeCl_3$) with zero resistance ammeter (ZRA), and then analyzed by power spectral density (PSD) and by corrosion admittance ($A_c$) spectrum. With aging at $850^{\circ}C$, the passive film of the alloy was found to get significantly unstable as represented by power spectral density (PSD) and a transition from metastable pitting state to stable one was observed. In the corrosion admittance spectrum, the number of negative $A_c$ corresponding to the state of localized corrosion increased with aging, suggesting that the precipitation of $\sigma$ phase considerably degraded the passive film by depleting Cr and Mo around it at $\alpha/\sigma$ or $\gamma/\sigma$ phase boundaries, thereby leading to the initiation of the pitting corrosion. However, the Cr and Mo at $\alpha/\sigma$ or $\gamma/\sigma$ phase boundaries which were once depleted due to the precipitation of the $\sigma$ phase were partly replenished by the diffusion of Cr and Mo from the surrounding matrix with aging time longer. The initiation of pitting seems to be associated with the precipitation density of the $\sigma$ phase with an effective size needed to induce the sufficient depletion of Cr and Mo around it.

금속 코팅된 탄소나노튜브의 전계 방출 특성 및 신뢰성 향상 (Improvement of Electron Emission Characteristics and Emission Stability from Metal-coated Carbon Nanotubes)

  • 우형수;박상식;김병환
    • 한국진공학회지
    • /
    • 제20권6호
    • /
    • pp.436-441
    • /
    • 2011
  • 각종 전자 방출원 및 디스플레이 응용 분야에서 뛰어난 가능성을 보이고 있는 탄소나노튜브의 전계 방출 특성을 개선하고 전자방출의 신뢰성을 개선하기 위해 탄소나노튜브의 표면에 수 nm 두께의 금속 코팅을 적용하였다. 탄소나노튜브는 실리콘 기판위에 2 nm 두께의 Invar (52% Fe, 42% Ni, 6% Co alloy) 촉매를 사용하여 $450^{\circ}C$의 온도에서 플라즈마 화학기상 증착법으로 성장시켰다. 성장된 탄소나노튜브의 밀도 제어를 위해 성장 후 질소 플라즈마로 일부를 식각한 후 티타늄(Ti) 금속을 탄소나노튜브 표면에 5~150 nm 두께로 스퍼터링 증착하였다. 5 nm로 티타늄을 탄소나노튜브 표면에 코팅한 경우, 코팅 전에 비해 6 V/${\mu}m$의 전계에서 전류밀도가 4배 이상 증가되었으며, 전계 방출 전류의 요동(fluctuation) 또한 40% 이상 감소됨을 확인할 수 있었다. 이는 티타늄의 일함수가 4.3 eV로 탄소나노튜브의 5 eV에 비해 작을 뿐만 아니라, 탄소나노튜브의 약점으로 지적되는 기판과의 접착성과 접촉저항이 티타늄의 표면 코팅으로 인해 크게 개선된 결과로 판단된다.

대형마찰용접을 이용한 로타샤프트 제조공정개발 (Process Development of Rotor Shaft using a Large Friction Welding)

  • 정호승;조종래;이낙규;박희천;최성규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.401-404
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to different material characteristics, such as, thermal conductivity and flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

  • PDF

대형마찰용접을 이용한 로타샤프트 제조공정개발 (Development of Rotor Shaft Manufacturing Process using a Large Friction Welding)

  • 정호승;이낙규;박희천;최성규;조종래
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.266-270
    • /
    • 2007
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint face, and energy required for welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy, amount of upset, working time, and residual stresses in the joint. Inertia welding was conducted to make the large rotor shaft for low speed marine diesel engine, alloy steel for shaft of 140mm. Due to material characteristics, such as, thermal conductivity and high temperature flow stress, on the two sides of the weld interface, modeling is crucial in determining the optimal weld parameters. FE simulation is performed by the commercial code DEFORM-2D. A good agreement between the predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters.

TAB 테이프 제조를 위한 구리 도금 및 에칭에 관한 연구 (Cu Electroplating on Patterned Substrate and Etching Properties of Cu-Cr Film for Manufacturing TAB Tape)

  • 김남석;강탁;윤일표;박용수
    • 한국표면공학회지
    • /
    • 제27권3호
    • /
    • pp.158-165
    • /
    • 1994
  • Cu-Cr alloy thin film requires good quality of etching be used for TAB technology. The etched cross sec-tion was clean enough when the etching was performed in 0.1M $FeCl_3$ solution at $50^{\circ}C$. The etching rate was increased with the amount of $KMnO_4$. For enhanced profile of cross section and rate, the spray etchning was found to be superior compared to the immersion etching. A series of experiments were performed to improve the uniformity of the current distribution in electrodeposition onto the substrate with lithographic patterns. Copper was electrodeposited from quiescent-solution, paddle-agitated-solution, and air-bubbled-solution to in-vestigate the effect of the fluid flow. The thickness profile of the specimen measured by profilmetry has the non uniformity at feature scale in quiescent-solution, because of the longitudinal vortex roll caused by the natural convection. However, uniform thickness profile was achieved in paddle-agitated or air bubbled solu-tion.

  • PDF

Development of Continuous Galvanization-compatible Martensitic Steel

  • Gong, Y.F.;Song, T.J.;Kim, Han S.;Kwak, J.H.;De Cooman, B.C.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2012
  • The development of martensitic grades which can be processed in continuous galvanizing lines requires the reduction of the oxides formed on the steel during the hot dip process. This reduction mechanism was investigated in detail by means of High Resolution Transmission Electron Microscopy (HR-TEM) of cross-sectional samples. Annealing of a martensitic steel in a 10% $H_2+N_2$ atmosphere with the dew point of $-35^{\circ}C$ resulted in the formation of a thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film and amorphous $_{a-X}MnO.SiO_{2}$ oxide particles on the surface. During the hot dip galvanizing in Zn-0.13%Al, the thin $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was reduced by the Al. The $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides however remained embedded in the Zn coating close to the steel/coating interface. No $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formation was observed. During hot dip galvanizing in Zn-0.20%Al, the $_{C-X}MnO.SiO_{2}$ (x>1) oxide film was also reduced and the amorphous $_{a-X}MnO.SiO_{2}$ and $a-SiO_{2}$ particles were embedded in the $Fe_{2}Al_{5-X}Zn_{X}$ inhibition layer formed at the steel/coating interface during hot dipping. The results clearly show that Al in the liquid Zn bath can reduce the crystalline $_{C-X}MnO.SiO_{2}$ (x>1) oxides but not the amorphous $_{a-X}MnO.SiO_{2}$ (x<0.9) and $a-SiO_{2}$ oxides. These oxides remain embedded in the Zn layer or in the inhibition layer, making it possible to apply a Zn or Zn-alloy coating on martensitic steel by hot dipping. The hot dipping process was also found to deteriorate the mechanical properties, independently of the Zn bath composition.