• Title/Summary/Keyword: Fe-Activation

Search Result 358, Processing Time 0.023 seconds

Synthesis of Fe-TiB2 Nanocomposite by a combination of mechanical activation and heat treatment

  • Hyunh, Xuan Khoa;Nguyen, Quoc Tuan;Kim, Ji-Sun;Gang, Tae-Hun;Kim, Jin-Cheon;Gwon, Yeong-Sun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • The TiB2-reinforced iron matrix nanocomposite (Fe-TiB2) was in-situ fabricated from titanium hydride (TiH2) and iron boride (FeB) powders by a simple and cost-effective process that combines the mechanical activation (MA) and a subsequent heat treatment (HT). Effect of milling factors and synthesized temperatures on the formation of the nanocomposite were presented and discussed. A differential thermal analyser (DSC-TG) was employed for examination of thermal behavior of MAed powders. Phases of the nanocomposite were confirmed by X-ray diffraction analysis (XRD). The morphologies and microstructure of nanocomposite were investigated by field emission-scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Phase composition and distribution were analyzed by electron probe X-ray microanalysis (EPMA). Results showed that TiB2 particles formed in nanoscale were uniformly distributed in alloyed Fe matrix.

  • PDF

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

Synthesis and Properties of Fe-Ni Nano-sized Powders using Metal Nitrates (금속질산염을 이용한 Fe-Ni 나노분말의 제조 및 특성)

  • Joo, Min-Hee;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2009
  • The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate have been investigated. $Fe_2O_3$/NiO composite powders were prepared by chemical solution mixing of Fe- and Ni-nitrate and calcination at $350^{\circ}C$ for 2 h. The calcined powders were hydrogen-reduced at $350^{\circ}C$ for 30 min. The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate were analyzed by TG in air and hydrogen atmosphere, respectively. TG and XRD analysis for hydrogen-reduced powders revealed that the $Fe_2O_3$/NiO phase transformed to $FeNi_3$ phase at the temperature of $350^{\circ}$. The activation energy for the hydrogen reduction, evaluated by Kissinger method, was measured as 83.0 kJ/mol.

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.

Fabrication and Characterization of Nano-sized Fe-50 wt% Co Powder from Fe- and Co-nitrate (Fe- 및 Co-질산염을 이용한 Fe-50 wt% Co 나노분말의 합성 및 특성 평가)

  • Riu, Doh-Hyung;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.20 no.10
    • /
    • pp.508-512
    • /
    • 2010
  • The optimum route to fabricate nano-sized Fe-50 wt% Co and hydrogen-reduction behavior of calcined Fe-/Conitrate was investigated. The powder mixture of metal oxides was prepared by solution mixing and calcination of Fe-/Co-nitrate. A DTA-TG and microstructural analysis revealed that the nitrates mixture by the calcination at $300^{\circ}C$ for 2 h was changed to Fe-oxide/$Co_3O_4$ composite powders with an average particle size of 100 nm. The reduction behavior of the calcined powders was analyzed by DTA-TG in a hydrogen atmosphere. The composite powders of Fe-oxide and Co3O4 changed to a Fe-Co phase with an average particle size of 40 nm in the temperature range of $260-420^{\circ}C$. In the TG analysis, a two-step reduction process relating to the presence of Fe3O4 and a CoO phase as the intermediate phase was observed. The hydrogen-reduction kinetics of the Fe-oxide/Co3O4 composite powders was evaluated by the amount of peak shift with heating rates in TG. The activation energies for the reduction, estimated by the slope of the Kissinger plot, were 96 kJ/mol in the peak temperature range of $231-297^{\circ}C$ and 83 kJ/mol of $290-390^{\circ}C$, respectively. The reported activation energy of 70.4-94.4 kJ/mol for the reduction of Fe- and Co-oxides is in reasonable agreement with the measured value in this study.

Formation of $FeAl_2O_4$ in $H_2-CO_2$ and its behavior in $CO_2$(I) ($H_2-CO_2$에서 $FeAl_2O_4$의 생성기구와 $CO_2$ 중에서의 거동(I))

  • 이홍림;강명구
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 1982
  • $FeAl_2O_4$ was formed from the starting material of $Fe_2O_3$ and $Al_2O_3$ by controlling the oxygen partial pressure using $H_2-CO_2$ gas mixture, over the temperature range of 800~120$0^{\circ}C$. The formation mechanism of $FeAl_2O_4$ was found to be a second order chemical reaction, and the activation energy of formation was observed as 39.97 kcal/mole. Vaporization behavior of $FeAl_2O_4$ under $CO_2$ atmosphere was observed over the temperature range of 800~120$0^{\circ}C$. $FeAl_2O_4$ was vaporized by a second order chemical reaction and the activation energy was found to be 21.8kcal/mole. Electrical conductivity of $FeAl_2O_4$ was also measured.

  • PDF

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Effect of Ga, Nb Addition on Disproportionation Kinetics of Nd-Fe-B Alloy

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.150-154
    • /
    • 2009
  • The effect of Ga and, Nb addition on the kinetics and mechanism of the disproportionation of a Nd-Fe-B alloy were investigated by isothermal thermopiezic analysis (TPA) using $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ (x=0 and 0.3, y= 0 and 0.2) alloys. The addition of Ga and Nb retarded the disproportionation kinetics of the Nd-Fe-B alloy significantly, and increased the activation energy of the disproportionation reaction. The disproportionation kinetics of the $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ alloys measured under an initial hydrogen pressure of 0.02 MPa were fitted to a parabolic rate law. This suggested that during the disproportionation of $Nd_{12.5}Fe_{(81.1-(x+y))}B_{6.4}Ga_xNb_y$ alloys with an initial hydrogen pressure of 0.02 MPa, a continuous disproportionation product is formed and the overall reaction rate is limited by the diffusion of hydrogen atoms (or ions).