Browse > Article
http://dx.doi.org/10.4491/eer.2015.051

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review  

Lee, Changha (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Environmental Engineering Research / v.20, no.3, 2015 , pp. 205-211 More about this Journal
Abstract
Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.
Keywords
Advanced oxidation process (AOP); Ferryl ion; Fenton reaction; Ferrous ion; Hydroxyl radical; Organic contaminants; Oxygen activation; Zero-valent iron;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cater SR, Stefan MI, Bolton JT, Safarzadeh-Amiri A. UV/$H_2O_2$ Treatment of methyl tert-butyl ether in contaminated waters. Environ. Sci. Technol. 2000;34:659-662.   DOI   ScienceOn
2 von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003;37:1443-1467.   DOI   ScienceOn
3 Pignatello JJ, Oliveros E, MacKay A. Advanced oxidation processes for organic contaminant destruction based on the Fenton Reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 2006;36:1-84.   DOI   ScienceOn
4 Brillas E, Sires I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem. Rev. 2009;109:6570-6631.   DOI   ScienceOn
5 Lee JY, Jo WK. Control of methyl tertiary-butyl ether via carbon-doped photocatalysts under visible-light irradiation. Environ. Eng. Res. 2012;17:179-184.   DOI   ScienceOn
6 Chae MS, Woo SG, Kang JK, Bae SD, Choi SI. Treatability evaluation of N-hexadecane and 1-methylnaphthalene during Fenton reaction. Environ. Eng. Res. 2012;17:217-225.   DOI   ScienceOn
7 Kruithof JC, Kamp PC, Martijn BJ. UV/$H_2O_2$ treatment: A practical solution for organic contaminant control and primary disinfection. Ozone Sci. Eng. 2007;29:273-280.   DOI   ScienceOn
8 Reungoat J, Macova M, Escher BI, Carswell S, Mueller JF, Keller J. Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res. 2010;44:625-637.   DOI   ScienceOn
9 Watts R, Teel A. Treatment of contaminated soils and groundwater using ISCO. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 2006;10: 2-9.
10 Jakob L, Hashem TM, Burki S, Guindy NM, Braun AM. Vacuum-ultraviolet (VUV) photolysis of water: oxidative degradation of 4-chlorophenol. J. Photochem. Photobiol. A: Chem. 1993;75:97-103.   DOI
11 Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995;95:69-96.   DOI   ScienceOn
12 Baldacchino G. Pulse radiolysis in water with heavy-ion beams. A short review. Radiat. Phys. Chem. 2008;77:1218-1223.   DOI   ScienceOn
13 Noradoun C, Engelmann M, McLauglin M, et al. Destruction of chlorinated phenols by dioxygen activation under aqueous room temperature and pressure conditions. Ind. Eng. Chem. Res. 2003;42:5024-5030.   DOI   ScienceOn
14 Joo SH, Feitz AJ, Sedlak DL, Waite TD. Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 2005;39:1263-1268.   DOI   ScienceOn
15 Keenan CR, Sedlak DL. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008;42:1262-1267.   DOI   ScienceOn
16 Bokare AD, Choi W. Zero-valent aluminum for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 2009;43:7130-7135.   DOI   ScienceOn
17 Wen G, Wang SJ, Ma J, et al. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. J. Hazard. Mater. 2014;275:193-199.   DOI   ScienceOn
18 Bard AJ, Parsons R, Jordan J. Standard potentials in aqueous solution. New York, Basel: Marcel Dekker, Inc.; 1985.
19 Li L, Fan MH, Brown RC, et al. Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review. Crit. Rev. Environ. Sci. Technol. 2006;36:405-431.   DOI   ScienceOn
20 Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014;267;194-205.   DOI   ScienceOn
21 Zecevic S, Drazic DM, Gojkovic S. Oxygen reduction on iron. Part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions. J. Electroanal. Chem. 1989;265:179-193.   DOI   ScienceOn
22 Zecevic S, Drazic DM, Gojkovic S. Oxygen reduction on iron. Part IV. The reduction of hydrogen peroxide as the intermediate in oxygen reduction reaction in alkaline solutions. Electrochim. Acta 1991;36:5-14.   DOI   ScienceOn
23 Hug SJ, Leupin O. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003;37:2734-2742.   DOI   ScienceOn
24 Lee H, Lee HJ, Sedlak DL, Lee C. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013;92:652-658.   DOI   ScienceOn
25 Bataineh H, Pestovsky O, Bakac A. pH-Induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem. Sci. 2012;3:1594-1599.   DOI
26 Pestovsky O, Bakac A. Aqueous ferryl(IV) ion: Kinetics of oxygen atom transfer to substrates and oxo exchange with solvent water. Inorg. Chem. 2006;45:814-820.   DOI   ScienceOn
27 Bernasconi L, Baerends EJ. Generation of ferryl species through dioxygen activation in iron/EDTA systems: A computational study. Inorg. Chem. 2009;48:527-540.   DOI   ScienceOn
28 Keenan CR, Sedlak DL. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008;42:6936-6941.   DOI   ScienceOn
29 Lee C, Keenan CR, Sedlak DL. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 2008;42:4921-4926.   DOI   ScienceOn
30 Lee H, Lee HJ, Kim HE, Kweon J, Lee BD, Lee C. Oxidant production from corrosion of nano- and microparticulatezerovalent iron in the presence of oxygen: A comparative study. J. Hazard. Mater. 2014;265:201-207.   DOI   ScienceOn
31 Stumm W, Lee GF. Oxygenation of ferrous iron. Ind. Eng. Chem. 1961;53:143-146.   DOI
32 Millero FJ, Izauirre M. Effect of ionic strength and ionic interactions on the oxidation of Fe(II). J. Sol. Chem. 1989;18:585-599.   DOI
33 King DW, Lounsbury HA, Millero FJ. Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 1995;29:818-824.   DOI   ScienceOn
34 Ai Z, Gao Z, Zhang L, He W, Yin JJ. Core−shell structure dependent reactivity of Fe@$Fe_2O_3$ nanowires on aerobic degradation of 4-chlorophenol. Environ. Sci. Technol. 2013;47:5344-5352   DOI
35 Pham ALT, Lee C, Doyle FM, Sedlak DL. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 2009;43:8930-8935.   DOI   ScienceOn
36 Lee C, Sedlak DL. Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environ. Sci. Technol. 2008;42:8528-8533.   DOI   ScienceOn
37 Pang SY, Jiang J, Ma J. Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environ. Sci. Technol. 2011;45:307-312.   DOI   ScienceOn
38 Remucal CK, Lee C, Sedlak DL. Comment on "Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl Ions (Fe(IV)) as active intermediates in Fenton reaction". Environ. Sci. Technol. 2011;45:3177-3178.   DOI   ScienceOn
39 Wang L, Cao MH, Ai ZH, Zhang LZ. Dramatically enhanced aerobic atrazine degradation with Fe@$Fe_2O_3$ core-shell nanowires by tetrapolyphosphate. Environ. Sci. Technol. 2014;48:3354-3362.   DOI   ScienceOn
40 Wang L, Wang F, Li PN, Zhang LZ. Ferrous-tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation. Sep. Purif. Technol. 2013;120:148-155.   DOI   ScienceOn
41 Lee J, Kim J, Choi W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environ. Sci. Technol. 2007;41:3335-3340.   DOI   ScienceOn
42 Kyle JH. Kinetics of the base decomposition of dodecatungstophosphate(3-) in weakly alkaline solutions. J. Chem. Soc. Dalton Trans. 1983;26:2609-2612.
43 Jurgensen A, Moffat JB. The stability of 12-molybdosilicic, 12-tungstosilicic, 12-molybdophosphoric and 12-tungstophosphoric acids in aqueous solution at various pH. Catal. Lett. 1995;34:237-244.   DOI
44 Lee C, Sedlak DL. A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. J. Mol. Cat. A: Chem. 2009;311:1-6.   DOI
45 Kang SH, Choi W. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ. Sci. Technol. 2009;43:878-883.   DOI   ScienceOn
46 Joo SH, Feitz AJ, Waite TD. Oxidative degradation of the carbothiolate herbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol. 2004;38:2242-2247.   DOI   ScienceOn
47 Noradoun C, Cheng I F. Degradation induced by oxygen activation in a zerovalent iron/air/water system. Environ. Sci. Technol. 2005;39:7158-7163.   DOI   ScienceOn
48 Nakatsuji Y, Salehi Z, Kawase Y. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron. J. Environ. Manage. 2015;152:183-191.   DOI   ScienceOn
49 Stieber M, Putschew A, Jekel M. Treatment of pharmaceuticals and diagnostic agents using zero-valent iron - Kinetic studies and assessment of transformation products assay. Environ. Sci. Technol. 2011;45:4944-4950.   DOI   ScienceOn
50 He C, Yang J, Zhu L, et al. pH-Dependent degradation of acid orange II by zero-valent iron in presence of oxygen. Sep. Purif. Technol. 2013;117:59-68.   DOI   ScienceOn
51 Jagadevan S, Jayamurthy M, Dobson P, Thompson IP. A novel hybrid nano zerovalent iron initiated oxidation - Biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res. 2012;46:2395-2404.   DOI   ScienceOn
52 Englehardt J, Meeroof D, Echegoyen L, Deng Y, Raymo F, Shibata T. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration. Environ. Sci. Technol. 2007;41:270-276.   DOI   ScienceOn
53 Fu F, Han W, Tang B, Hu M, Cheng Z. Insights into environmental remediation of heavy metal and organic pollutants: Simultaneous removal of hexavalent chromium and dye from wastewater by zero-valent iron with ligand-enhanced reactivity. Chem. Eng. J. 2013;232:534-540.   DOI   ScienceOn
54 Cao M, Wang L, Ai Z, Zhang L. Efficient remediation of pentachlorophenol contaminated soil with tetrapolyphosphate washing and subsequent ZVI/Air treatment. J. Hazard. Mater. 2015;292:27-33.   DOI   ScienceOn
55 Wang L, Cao M, Ai Z, Zhang L. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex. Environ. Sci. Technol. 2015;49:3032-3039.   DOI   ScienceOn
56 Deng Y, Englehardt JD, et al. Ambient iron-mediated aeration (IMA) for water reuse. Water Res. 2013;47:850-858.   DOI   ScienceOn
57 Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008;42:4927-4933.   DOI   ScienceOn
58 Kim JY, Lee C, Love DC, Sedlak DL, Yoon J, Nelson KL. Inactivation of $MS_2$ coliphage by ferrous ion and zero-valent iron nanoparticles. Environ. Sci. Technol. 2011;45:6978-6984.   DOI   ScienceOn