• 제목/요약/키워드: Fe (III)

검색결과 569건 처리시간 0.031초

Study for the Development of Fe-NbC Composites by Advanced PM Techniques

  • Gordo, E.;Gomez, B.;Gonzalez, R.;Ruiz-Navas, E.M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.118-119
    • /
    • 2006
  • The development of Fe-based metal matrix composites (MMCs) with high content of hard phase has been approached by combining the use of advanced powder metallurgy techniques like high-energy milling (HEM), cold isostatic pressing (CIP) and vacuum sinterings. A 30% vol. of NbC particles was mixed with Fe powder by HEM in a planetary mill during 10h, characteristing the powder by the observation of morphology and microstructure by scanning electron microscopy (SEM). After of sintering process the variation of density, hardness,carbon content and the microstructural changes observed, permits to find the optimal conditions of processing. Afterwards, a heat treatment study was performed to study the hardenability of the composite.

  • PDF

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권4호
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

Xylenol Orange가 결합된 양이온 교환체에 의한 금속이온의 농축 및 Fe(III)의 분리 (Separation of Fe(III) and Concentration of Metal Ions Using Cation Exchange Resin Bonded with Xylenol Orange)

  • 박찬일;김현수;차기원
    • 대한화학회지
    • /
    • 제43권6호
    • /
    • pp.651-655
    • /
    • 1999
  • 뱃치법을 이용하여 음이온 교환수지(Amberlite IRA 400, $Cl^-$형)에 Xylenol Orange를 결합시킨 수지를 얻었다. 이 수지는 0.1 M 정도의 무기산에서 안정하였으며, Xylenol Orange가 결합된 Amberlite lRA-400 수지의 금속 이온들에 대한 흡착능을 측정해 본 결과, Fe(lll) 이온의 흡착력이 다른 이온에 비해 컸다. 따라서 Fe(III) 이온을 예비 농축할 수 있었으며 다른 이온으로 부터 분리하는데는 용리액으로 0.1 M sulfosalicylic acid 용액이 사용되었다.

  • PDF

3가철 코팅 불가사리 흡착제 제조 및 구리 제거 특성 평가 (Preparation of Fe(III)-Coated Starfish and Evaluation of the Removal Capacity of Copper)

  • 양재규;유목련;이승목
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.172-176
    • /
    • 2006
  • Fe(III)-Coated Star Fish (ICSF) was prepared by reaction of calcined Star Fish (SF) with Fe(III) solution at an elevated temperature. To investigate the stability of ICSF at acidic condition, dissolution of Fe was studied at pH 2 as a function of time. Extracted iron was negligible over the entire reaction time. This stability test suggests the applicability of ICSF in the treatment of wastewater even at low pH. Adsorption capacity of Cu(II) onto SF and ICSF was investigated in a batch and a column test. In the pH-edge adsorption, adsorption of copper onto SF and ICSF was quite similar over the entire pH range due to the presence of an important amount of Fe in SF itself. From the adsorption isotherm obtained with variation of the concentration of Cu(II), ICSF showed 1.6 times greater adsorption capacity than SF. Also, ICSF showed a greater removal capacity of Cu(II) in the column test.

Protection by Carnosine and Homocarnosine against L-DOPA-Fe(III)-Mediated DNA Cleavage

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1251-1254
    • /
    • 2005
  • It has been proposed that oxidation of L-3,4-dihydroxyphenylalanine (DOPA) may contribute to the pathogenesis of neurodegenerative disease. In this study, L-DOPA-Fe(III)-mediated DNA cleavage and the protection by carnosine and homocarnosine against this reaction were investigated. When plasmid DNA was incubated with L-DOPA in the presence of Fe(III), DNA strand was cleaved. Radical scavengers and catalase significantly inhibited the DNA breakage. These results suggest that $H_2O_2$ may be generated from the oxidation of DOPA and then $Fe^{3+}$ likely participates in a Fenton’s type reaction to produce hydroxyl radicals, which may cause DNA cleavage. Carnosine and homocarnosine have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and homocarnosine against L-DOPA-Fe(III)-mediated DNA cleavage have been studied. Carnosine and homocarnosine significantly inhibited DNA cleavage. These compounds also inhibited the production of hydroxyl radicals in L-DOPA/$Fe^{3+}$ system. The results suggest that carnosine and homocarnosine act as hydroxyl radical scavenger to protect DNA cleavage. It is proposed that carnosine and homocarnosine might be explored as potential therapeutic agents for pathologies that involve damage of DNA by oxidation of DOPA.

흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작 (Kinetics and mechanism of chromate reduction by biotite and pyrite)

  • 전철민;김재곤;문희수
    • 자원환경지질
    • /
    • 제36권1호
    • /
    • pp.39-48
    • /
    • 2003
  • 본 연구에서는 황철석과 흑운모를 이용한 회분식반응조실험(batch reactor experiment)을 통하여 수용성 Cr(Ⅵ)의 제거 및 반응속도를 살펴보았으며 이에 따른 산화환원 반응기작을 고찰하였다. 황철석 실험군이 흑운모실험 군에 비해 산화환원반응속도가 100배정도 빨랐으며, pH 3의 실험군이 pH 4 실험군에 비해 Cr(III)으로의 환원반응속도가 빠르게 나타났다. 황철석 실험군에서 Cr(Ⅵ) 초기농도치 90%이상이 제거되는데 걸리는 시간은 pH가 4일때 4시간, pH가 3일 때 40분 이내였다. 반면에, 흑운모 실험군의 경우 pH가 3인 조건에서도 Cr(Ⅵ) 초기농도의 90%이상이 제거되는데 400시간 이상이 걸렸다. 모든 조건에서 Cr(III)치 농도는 초기에 증가하는 경향을 보이다가 일정시간이 지나면 안정한 농도로 고정되었다. 산성의 반응용액에서 Cr(Ⅵ)의 환원반응속도는 이 두 광물이 포함하고 있는 2가 철의 해리속도와 관련이 있음을 의미한다. pH 4의 조건인 실험군에서는 용액 내 Cr(Ⅵ)이 Cr(III)으로 환원되고 Fe(II)가 Fe(III)로 산화된 후, (Cr, Fe)(OH)$_3$$_{ (s)}$와 같은 침전물을 생성하여 상대적으로 용액내 Cr(III)과 Fe(III)농도가 낮은 것으로 여겨진다. pH 3의 실험군을 화학양론적 고찰하였으며, 흑운모의 실험에서는 수용성 Fe(II)의 감소된 양과 Cr(Ⅵ)의 환원된 양의 이론적인 몰비가 [3Fe(II) : 1Cr(Ⅵ)]임에도 그 몰 비가 약 1:1로서 1 mole의 Cr(Ⅵ)을 환원시키는데 Fe(II)이 적게 소비되었으며, 이는 광물에서 해리되는 Fe(II)에 의한 Cr(Ⅵ)의 환원뿐만 아니라 흑운모 구조 내 Fe(II)이 용액 내 Fe(III) 이온을 Fe(II) 이온으로 환원시키는 불균질산화환원반응이 발생하고 이 반응으로 생성된 Fe(II) 이온이 다시 Cr(Ⅵ)의 환원반응에 기여하였기 때문이다. 그러나 황철석 실험의 경우, 그 몰비가 약 2.90:1 로서 3에 가까우며, 이는 황철석의 빠른 산화를 통하여 급속한 Fe(II) 이온이 공급됨으로서 Cr(Ⅵ)의 환원반응이 이론적 화학양론의 반응 몰비에 부합한 결과를 보인 것으로 판단된다.

이가철 거대고리 리간드의 착화합물과 산소 분자간의 반응 : 이가철 거대고리 리간드 착화합물의 산화성 탈수소 반응에 의한 새로운 불포화 고리계의 합성 (Reaction of the Fe(II) Macrocyclic Complexes with Dioxygen : Preparation of New Unsaturated Ring Systems by Oxidative Dehydrogenation Reactions of Fe(II) Macrocyclic Ligands)

  • 백명현;강신걸;우규환
    • 대한화학회지
    • /
    • 제28권6호
    • /
    • pp.384-392
    • /
    • 1984
  • 완전히 포화된 거대고리 리간드의 Fe(II) 착화합물 [Fe([14]aneN$_4)(CH_3CN)_2]^{2+}$과 ([14]ane$N_4$:1,4,8,11-tetraazacyclotetradecane) 산소분자간의 반응을 아세토니트릴 용액중에서 연구하였다. [Fe([14]aneTEX>$_4)(CH_3CN)_2]^{2+}$는 산소와 쉽게 반응하여 낮은 스핀 Fe(III) 착화합물 [Fe([14]aneN$_4)(CH_3CN)_2]^{3+}$을 생성하고 이는 다시 산화성 탈수소 반응에 의해 낮은 스핀 Fe(II) 착화합물 [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$을 형성한다. [Fe([14]tetraeneN$_4)(CH_3CN)_2]^{2+}$의 리간드는 불포화도가 매우 높고 이중결합이 컨쥬게이션 되어 있다. 또한 반응의 중간체로서 [Fe([14]dieneN$_4)(CH_3CN)_2]^{2+}$ 및 [Fe([14]dieneN$_4)(CH_3CN)_2]^{3+}$도 분리되었다. 이 반응과 관련된 Fe(II) 착화합물들은 일산화탄소와 반응하여 [FeL(CH$_3CN)(CO)]^{2+}$ (L = 거대고리 리간드) 형태의 착화합물을 이룬다. [FeL(CH$_3CN)(CO)]^{2+}$$v_{CO}$ 값과 [FeL(CH$_3CN_2)^{2+}$의 Fe(II) ${\to}$ Fe(III)의 전기화학적 산화포텐셜 및 산소에 대한 정성적인 안전성은 거대고리 리간드의 불포화도가 높아질수록 증가한다.

  • PDF

Preconcentration of Iron(III), Lead(II), Cobalt(II) and Chromium(III) on Amberlite XAD-1180 Resin Loaded with 4-(2-Pyridylazo)-resorcinol (PAR) and Their Determination by FAAS

  • Tokalloglu, Serife;Kartal, Senol
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1293-1296
    • /
    • 2006
  • In this study, a solid phase extraction method has been developed for the preconcentration and separation of the elements Cr(III), Fe(III), Co(II) and Pb(II) at trace levels by using a column packed with Amberlite XAD-1180 resin loaded with 4-(2-pyridylazo)-resorcinol (PAR) reagent. After preconcentrating, the metals retained on the column were eluted with 20 mL of 3 mol/L $HNO_3$ and then determined by flame atomic absorption spectrometry (FAAS). The factors affecting the recovery of the elements, such as pH, type and concentration of eluent, volume of sample and elution solution, and matrix components, were also ascertained. The recoveries of Cr(III), Fe(III), Co(II) and Pb(II) were found to be $99\;{\pm}\;4,\;97\;{\pm}\;3,\;95\;{\pm}\;3$ and $98\;{\pm}\;4$%, respectively, under the optimum conditions at 95% confidence level and the relative standard deviations found by analyzing of nine replicates were $\leq4.4$%. The preconcentration factors for Cr(III), Fe(III), Co(II) and Pb(II) were found as 75, 125, 50 and 75 respectively. The detection limits (DL, 3s/b) were 3.0 $\mu g/L$ for Cr(III), 1.25 $\mu g/L$ for Fe(III), 3.3 $\mu g/L$ for Co(II), and 7.2 $\mu g/L$ for Pb(II). The recoveries achieved by adding of metals at known concentrations to samples and the analysis results of Buffalo river sediment (RM 8704) show that the described method has a good accuracy. The proposed method was applied to tap water, stream water, salt and street dust samples.

Synthesis, Structure, and Reactivity of the [Fe4S4(SR)4]2- (R = 2-, 3-, and 4-Pyridinemethane) Clusters

  • Kim, Yu-Jin;Han, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.48-54
    • /
    • 2012
  • The $[Fe_4S_4]^{2+}$ clusters with 2-, 3-, and 4-pyridinemethanethiolate (S2-Pic, S3-Pic, and S4-Pic, respectively) terminal ligands have been synthesized from the ligand substitution reaction of the $(^nBu_4N)_2[Fe_4S_4Cl_4]$ (I) cluster. The new $(^nBu_4N)_2[Fe_4S_4(SR)_4]$ (R = 2-Pic; II, 3-Pic; III, 4-Pic; IV) clusters were characterized by FTIR and UV-Vis spectroscopy. Cluster II was crystallized in the monoclinic space group C2/c with a = 24.530 (5) $\AA$, b = 24.636(4) $\AA$, c = 21.762(4) $\AA$, ${\beta}=103.253(3)^{\circ}$, and Z = 8. The X-ray structure of II showed two unique 2:2 site-differentiated $[Fe_4S_4]^{2+}$ clusters due to the bidentate-mode coordination by 2-pyridinemethanethiolate ligands. Cluster III was crystallized in the same monoclinic space group C2/c with a = 26.0740(18) $\AA$, b = 23.3195(16) $\AA$, c = 22.3720(15) $\AA$, ${\beta}=100.467(2)^{\circ}$, and Z = 8. The 3-pyridinemethanethiolate ligand of III was coordinated to the $[Fe_4S_4]^{2+}$ core as a terminal mode. Cluster IV with 4-pyridinemethanethiolate ligands was found to have a similar structure to the cluster III. Fully reversible $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ redox waves were observed from all three clusters by cyclic voltammetry measurement. The electrochemical potentials for the $[Fe_4S_4]^{2+}/[Fe_4S_4]^+$ transition decreased in the order of II, III and IV, and the reduction potential changes by the ligands were explained based on the structural differences among the complexes. The complex III was reacted with sulfonium salt of $[PhMeSCH_2-p-C_6H_4CN](BF_4)$ in MeCN to test possible radical-involving reaction as a functional model of the [$Fe_4S_4$]-SAM (S-adenosylmethionine) cofactor. However, the isolated reaction products of 3-pyridinemethanethiolate-p-cyanobenzylsulfide and thioanisole suggested that the reaction followed an ionic mechanism and the products formed from the terminal ligand attack to the sulfonium.