• Title/Summary/Keyword: Fe(III)-reducing condition

Search Result 9, Processing Time 0.026 seconds

Stripping of Fe(III) from the Loaded Mixture of D2EHPA and TBP with Sulfuric Acid Containing Reducing Agents

  • Liu, Yang;Nam, Sang-Ho;Lee, Manseung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2109-2113
    • /
    • 2014
  • Solvent extraction of Fe(III) from chloride solution by using a mixture of D2EHPA (Di-(2-ethylhexyl)-phosphoric acid) and TBP (Tri-butyl phosphate) and the reductive stripping of Fe(III) from the loaded organic were investigated. Quantitative extraction of Fe(III) from the solution (Fe concentration = 90 g/L) was accomplished in two cross-current extraction stages by using the mixture of D2EHPA and TBP. In order to facilitate the stripping efficiency, a reductive stripping method was employed by using $H_2SO_3$ or $Na_2SO_3$ as a reducing agent. The addition of $H_2SO_4$ into reducing agents led to improvement in the stripping efficiency while high concentration acid would suppress it. Both of the mixtures of $H_2SO_4+H_2SO_3$ and $H_2SO_4+Na_2SO_3$ showed good efficiency for the stripping of Fe(III), while the latter was recommended as the stripping solution based on the economics and experimental condition.

Anaerobic Degradation of cis-1,2-Dichloroethylene by Cultures Enriched from a Landfill Leachate Sediment

  • Chang, Young-Cheol;Jung, KwEon;Yoo, Young-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.366-372
    • /
    • 2003
  • The production of microbiologically enriched cultures that degrade cis- 1,2-dichloroethylene(DCE) under anaerobic conditions was investigated. Among 80 environmental samples, 19 displayed significant degradation of $10{\mu}M$ cis-DCE during 1 month of anaerobic incubation, and one sediment sample collected at a landfill area (Nanji-do, Seoul, Korea) showed the greatest degradation ($94\%$). When this sediment culture was subcultured repeatedly, the ability to degrade cis-DCE gradually decreased. However, under Fe(III)-reducing conditions, cis-DCE degradation by the subculture was found to be maintained effectively. In the Fe(III)-reducing subculture, vinyl chloride (VC) was also degraded at the same extent as cis-DCE No accumulation of VC during the cis-DCE degradation was observed. Thus, Fe(III)-reducing microbes might be involved in the anaerobic degradation of the chlorinated ethenes. However, the subcultures established with Fe(III) could function even in the absence of Fe(III), showing that the degradation of cis-DCE and VC was not directly coupled with the Fe(III) reduction. Consequently, the two series of enrichment cultures could not be obtained that degrade both cis-DCE and VC in the presence or absence of Fe(III). Considering the lack of VC accumulation, both cultures reported herein may involve interesting mechanism(s) for the microbial remediation of environments contaminated with chlorinated ethenes. A number of fermentative reducers (microbes) which are known to reduce Fe(III) during their anaerobic growth are potential candidates involved in cir-DCE degradation in the presence and absence of Fe(III).

Isolation and Identification of an Anaerobic Dissimilatory Fe(III)-Reducing Bacterium, Shewanella putrefaciens IR-1

  • Hyun, Moon-Sik;Kim, Byung-Hong;Chang, In-Seop;Park, Hyung-Soo;Kim, Hyung-Joo;Kim, Gwang-Tae;Kim, Mi-a;Park, Doo-Hyun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.206-212
    • /
    • 1999
  • In order to isolate a Fe(III)-reducer from the natural environment, soil samples were collected from various patty fields and enriched with ferric citrate as a source of Fe(III) under anaerobic condition. Since the enrichment culture was serially performed, the Fe(III)-reduction activity was serially diluted and cultivated on an agar plate containing lactate and ferric citrate in an anaerobic glove box. A Gram negative, motile, rod-shaped and facultative anaerobic Fe(III)-reducer was isolated based on its highest Fe(III)-reduction activity, Bacterial growth was coupled with oxidation of lactate to Fe(III)-reduction, but the isolate fermented pyruvate without Fe(III), The isolate reduced an insoluble ferric iron (FeOOH) as well as a soluble ferric iron (ferric citrate). Using the BBL crystal enteric/non-fermentor identification kit and 16S rDNA sequence analysis, the isolate was identified as Shewanella putrefaciens IR-1.

  • PDF

Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a

  • Khanal, Anamika;Hur, Hor-Gil;Fredrickson, James K.;Lee, Ji-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1519-1525
    • /
    • 2021
  • Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.

Microbial Reduction of Iron(III) Oxides: Implication for Permeable Reactive Barriers. (철환원 미생물을 이용한 3가 철의 환원에 관한 연구)

  • 임현정;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.250-253
    • /
    • 2002
  • Remediation of groundwater using zero valent iron filings has received considerable attention in recent years. However, zero valent iron is gradually transformed to iron(III) oxides at permeable reactive barriers, so the reduction of iron(III) oxides can enhance the longevity of the reactive barriers. In this study, microbial reduction of Fe(III) was performed in anaerobic condition. A medium contained nutrients similar to soil solution. The medium was autoclaved and deoxygenated by purging with 99.99% $N_2$ and pH was buffered to 6, while the temperature was regulated as 2$0^{\circ}C$. Activity of iron reducing bacteria were not affected by chlorinated organics but affected by iron(III) oxide. Although perchloroethylene(PCE) was not degraded with only ferric oxide, PCE was reduced to around 50% with ferric oxide and microorganism. It shows that reduced iron can dechlorinate PCE.

  • PDF

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

Effects and optimum conditions of pre-reductant in the analysis of inorganic arsenic by hydride generation-atomic absorption spectrometry (HG-AAS에 의한 무기비소 분석 시 예비환원제의 최적화 조건과 분석에 미치는 영향)

  • Song, Myung Jin;Park, Kyung Su;Kim, Young Man;Lee, Won
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.396-402
    • /
    • 2005
  • We try to look for optimum conditions of pre-reductants like L-Cysteine, KI and $FeSO_4$ when analyzing inorganic arsenic by using hydride generation-atomic absorption spectrometry, and run a comparative study of effect in the analysis of them. Also, we separated and analyzed only inorganic arsenic by using $H_2SO_4$-trap to eliminate organic arsenic which are MMA(monomethylarsonate) and DMA(dimethylarsinate). Under the conditions of mixture acid of 1.8 M HCl and 0.08 M $HNO_3$, arsenic standard solution of 20 ppb have more higher absorbance than without adding acid. In case of L-Cysteine, As(V) completely reduces into As(III) when 0.5 g of L-Cysteine is reacted more than 30 mins. in weak acid condition of approximately 0.07 M $HNO_3$ or HCl. In the event of KI, As(V) completely reduces into As(III) when 3 g of KI is reacted more than 1hour in acid condition of 0.8 M $HNO_3$. On the occasion of $FeSO_4$, the inside of tube is blocked by precipitation by mixture reaction of $NaBH_4$ and $Fe^{2+}$, therefore, comparing to other pre-reductants, reproducibility of efficiency of reducing As(V) to As(III) is low. To evaluate the accuracy of the analytical results, we use NIST SRM 1643C Trace Elements in Water ($82.1{\pm}1.2ng/mL$). The results are satisfactory.

Reduction of Hexavalent Chromium by Shewanella sp. HN-41 in the Presence of Ferric-Citrate (구연산철 환원 조건하에서 Shewanella sp. HN-41에 의한 6가 크롬의 환원)

  • Hyemin Park;Jin-Hyeob Kwak;Ji-Hoon Lee
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.253-258
    • /
    • 2023
  • In the environment, chromium often exists in a highly mobile and toxic form of Cr(VI). Therefore, the reduction of Cr(VI) to less toxic Cr(III) is considered an effective remediation strategy for Cr(VI)-contamination. In this study, the biological reduction of hexavalent chromium was examined at the concentrations of 0.01 mM, 0.1 mM, and 1 mM Cr(VI) by the dissimilatory metal-reducing bacterium, Shewanella sp. HN-41 in the presence of ferric-citrate. With the relatively condensed cell densities, the aqueous phase Cr(VI) was reduced at the proportions of 42%, 23%, and 31%, respectively for the 0.01 mM, 0.1 mM, and 1 mM Cr(VI) incubations, while Fe(III)-citrate was reduced at 95%, 88%, and 73%, respectively. Although the strain HN-41 was not considered to reduce Cr(VI) as the sole electron acceptor for anaerobic metabolism in the preliminary experiment, it has been presumed that outer-membrane c-type cytochromes such as MtrC and OmcA reduced Cr(VI) in the presence of ferric-citrate as the electron acceptor. Since this study indicated the potential of relatively high cell density for Cr(VI) reduction, it might propose a bioremediation strategy for Cr(VI) removal from contaminated waters using engineered systems such as bioreactors employing high cell growths.

Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell (미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산)

  • Lee, Yu-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).