DOI QR코드

DOI QR Code

Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a

  • Khanal, Anamika (Department of Bioenvironmental Chemistry, Jeonbuk National University) ;
  • Hur, Hor-Gil (School of Environmental and Earth Science, Gwangju Institute of Science and Technology) ;
  • Fredrickson, James K. (Pacific Northwest National Laboratory) ;
  • Lee, Ji-Hoon (Department of Bioenvironmental Chemistry, Jeonbuk National University)
  • Received : 2021.07.20
  • Accepted : 2021.09.01
  • Published : 2021.11.28

Abstract

Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.

Keywords

Acknowledgement

This research was funded by "Basic Science Research Program" through the National Research Foundation of Korea (NRF) (NRF-2016R1D1A3B01012231). We would also like to express our gratitude to the editors of the Writing Center at Jeonbuk National University for their skilled English-language assistance.

References

  1. Ray RR. 2016. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip. Toxicol. 9: 55-65. https://doi.org/10.1515/intox-2016-0007
  2. Halasova E, Matakova T, Kavcova E, Musak L, Letkova L, Adamkov M, et al. 2009. Human lung cancer and hexavalent chromium exposure. Neuro Endocrinol. Lett. 30 Suppl 1: 182-185.
  3. Saha R, Nandi R, Saha B. 2011. Sources and toxicity of Hexavalent chromium. J. Coord. Chem. 64: 1782-1806. https://doi.org/10.1080/00958972.2011.583646
  4. Zhang H-K, Lu H, Wang J, Zhou J-T, Sui M. 2014. Cr(VI) reduction and Cr(III) immobilization by Acinetobacter sp. HK-1 with the assistance of a novel quinone/graphene oxide composite. Environ. Sci. Technol. 48: 12876-12885. https://doi.org/10.1021/es5039084
  5. Sani RK, Peyton BM, Smith WA, Apel WA, Petersen JN. 2002. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl. Microbiol. Biotechnol. 60: 192-199. https://doi.org/10.1007/s00253-002-1069-6
  6. Viamajala S, Smith WA, Sam RK, Apel WA, Petersen JN, Neal AL, et al. 2007. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresour. Technol. 98: 612-622. https://doi.org/10.1016/j.biortech.2006.02.023
  7. Ahmad WA, Venil CK, Nkhalambayausi Chirwa EM, Wang Y-T, Sani MH, Samad AFA, et al. 2021. Bacterial reduction of Cr(VI): Operational challenges and feasibility. Curr. Pollut. Rep. 7: 115-127. https://doi.org/10.1007/s40726-021-00174-8
  8. Gu WZ, Zheng DC, Li DP, Wei CC, Wang X, Yang QZM, et al. 2021. Integrative effect of citrate on Cr(VI) and total Cr removal using a sulfate-reducing bacteria consortium. Chemosphere 279: 130437. https://doi.org/10.1016/j.chemosphere.2021.130437
  9. Kulp TR, Hoeft SE, Miller LG, Saltikov C, Murphy JN, Han S, et al. 2006. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles lakes, California. Appl. Environ. Microbiol. 72: 6514-6526. https://doi.org/10.1128/AEM.01066-06
  10. Fletcher KE, Boyanov MI, Thomas SH, Wu Q, Kemner KM, Lo?ffler FE. 2010. U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species. Environ. Sci. Technol. 44: 4705-4709. https://doi.org/10.1021/es903636c
  11. Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF. 2002. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 80: 637-649. https://doi.org/10.1002/bit.10430
  12. List C, Hosseini Z, Meibom KL, Hatzimanikatis V, Bernier-Latmani R. 2019. Impact of iron reduction on the metabolism of Clostridium acetobutylicum. Environ. Microbiol. 21: 3548-3563. https://doi.org/10.1111/1462-2920.14640
  13. Gerlach R, Field EK, Viamajala S, Peyton BM, Apel WA, Cunningham AB. 2011. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp strain ES6. Biodegradation 22: 983-995. https://doi.org/10.1007/s10532-011-9457-1
  14. Jin Q. 2012. Energy conservation of anaerobic respiration. Am. J. Sci. 312: 573-628. https://doi.org/10.2475/06.2012.01
  15. Dalla Vecchia E, Suvorova EI, Maillard J, Bernier-Latmani R. 2014. Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. Geobiology 12: 48-61. https://doi.org/10.1111/gbi.12067
  16. Ehrenreich A, Widdel F. 1994. Anaerobic oxidation ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60: 4517-4526. https://doi.org/10.1128/aem.60.12.4517-4526.1994
  17. Hegler F, Posth NR, Jiang J, Kappler A. 2008. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol. Ecol. 66: 250-260. https://doi.org/10.1111/j.1574-6941.2008.00592.x
  18. Widdel F. 1980. Anaerober Abbau von Fettsauren und Benzoesaure durch neu isolierte Arten sulfat-reduzierender Bakterien. Georg-August-Universitat zu Gottingen.
  19. Tschech A, Pfennig N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137: 163-167. https://doi.org/10.1007/BF00414460
  20. Widdel F, Pfennig N. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395-400. https://doi.org/10.1007/BF00406470
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41: D590-596. https://doi.org/10.1093/nar/gks1219
  23. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. 2004. ARB: a software environment for sequence data. Nucl. Acids Res. 32: 1363-1371. https://doi.org/10.1093/nar/gkh293
  24. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  25. Stookey LL. 1970. Ferrozine - a new spectrophotometric reagent for iron Anal. Chem. 42: 779-781.
  26. Rangaswamy S, Agblevor FA. 2002. Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl. Microbiol. Biotechnol. 60: 88-93. https://doi.org/10.1007/s00253-002-1067-8
  27. Poulsen HV, Willink FW, Ingvorsen K. 2016. Aerobic and anaerobic cellulase production by Cellulomonas uda. Arch. Microbiol. 198: 725-735. https://doi.org/10.1007/s00203-016-1230-8
  28. Dobbin PS, Carter JP, Garcia-Salamanca San Juan C, von Hobe M, Powell AK, Richardson DJ. 1999. Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol. Lett. 176: 131-138. https://doi.org/10.1016/S0378-1097(99)00229-3
  29. Lovley DR. 1987. Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol. J. 5: 375-399. https://doi.org/10.1080/01490458709385975
  30. Scala DJ, Hacherl EL, Cowan R, Young LY, Kosson DS. 2006. Characterization of Fe(III)-reducing enrichment cultures and isolation of Fe(III)-reducing bacteria from the Savannah River site, South Carolina. Res. Microbiol. 157: 772-783. https://doi.org/10.1016/j.resmic.2006.04.001
  31. Zhang LM, Zeng Q, Liu X, Chen P, Guo XX, Ma LYZ, et al. 2019. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem. Geol. 525: 390-399. https://doi.org/10.1016/j.chemgeo.2019.07.038
  32. Viamajala S, Peyton BM, Sani RK, Apel WA, Petersen JN. 2004. Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol. Prog. 20: 87-95. https://doi.org/10.1021/bp034131q
  33. Peretyazhko T, Zachara JM, Heald SM, Kukkadapu RK, Liu C, Plymale AE, et al. 2008. Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides. Environ. Sci. Technol. 42: 5499-5506. https://doi.org/10.1021/es8003156
  34. Charlet L, Bosbach D, Peretyashko T. 2002. Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chem. Geol. 190: 303-319. https://doi.org/10.1016/S0009-2541(02)00122-5