Browse > Article
http://dx.doi.org/10.4014/jmb.2107.07038

Direct and Indirect Reduction of Cr(VI) by Fermentative Fe(III)-Reducing Cellulomonas sp. Strain Cellu-2a  

Khanal, Anamika (Department of Bioenvironmental Chemistry, Jeonbuk National University)
Hur, Hor-Gil (School of Environmental and Earth Science, Gwangju Institute of Science and Technology)
Fredrickson, James K. (Pacific Northwest National Laboratory)
Lee, Ji-Hoon (Department of Bioenvironmental Chemistry, Jeonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.11, 2021 , pp. 1519-1525 More about this Journal
Abstract
Hexavalent chromium (Cr(VI)) is recognized to be carcinogenic and toxic and registered as a contaminant in many drinking water regulations. It occurs naturally and is also produced by industrial processes. The reduction of Cr(VI) to Cr(III) has been a central topic for chromium remediation since Cr(III) is less toxic and less mobile. In this study, fermentative Fe(III)-reducing bacterial strains (Cellu-2a, Cellu-5a, and Cellu-5b) were isolated from a groundwater sample and were phylogenetically related to species of Cellulomonas by 16S rRNA gene analysis. One selected strain, Cellu-2a showed its capacity of reduction of both soluble iron (ferric citrate) and solid iron (hydrous ferric oxide, HFO), as well as aqueous Cr(VI). The strain Cellu-2a was able to reduce 15 μM Cr(VI) directly with glucose or sucrose as a sole carbon source under the anaerobic condition and indirectly with one of the substrates and HFO in the same incubations. The heterogeneous reduction of Cr(VI) by the surface-associated reduced iron from HFO by Cellu-2a likely assisted the Cr(VI) reduction. Fermentative features such as large-scale cell growth may impose advantages on the application of bacterial Cr(VI) reduction over anaerobic respiratory reduction.
Keywords
Cellulomonas; Cr(VI) reduction; Fe(III) reduction; heterogenous reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmad WA, Venil CK, Nkhalambayausi Chirwa EM, Wang Y-T, Sani MH, Samad AFA, et al. 2021. Bacterial reduction of Cr(VI): Operational challenges and feasibility. Curr. Pollut. Rep. 7: 115-127.   DOI
2 Dalla Vecchia E, Suvorova EI, Maillard J, Bernier-Latmani R. 2014. Fe(III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI-1. Geobiology 12: 48-61.   DOI
3 Peretyazhko T, Zachara JM, Heald SM, Kukkadapu RK, Liu C, Plymale AE, et al. 2008. Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides. Environ. Sci. Technol. 42: 5499-5506.   DOI
4 Halasova E, Matakova T, Kavcova E, Musak L, Letkova L, Adamkov M, et al. 2009. Human lung cancer and hexavalent chromium exposure. Neuro Endocrinol. Lett. 30 Suppl 1: 182-185.
5 Zhang H-K, Lu H, Wang J, Zhou J-T, Sui M. 2014. Cr(VI) reduction and Cr(III) immobilization by Acinetobacter sp. HK-1 with the assistance of a novel quinone/graphene oxide composite. Environ. Sci. Technol. 48: 12876-12885.   DOI
6 Fletcher KE, Boyanov MI, Thomas SH, Wu Q, Kemner KM, Lo?ffler FE. 2010. U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species. Environ. Sci. Technol. 44: 4705-4709.   DOI
7 Zhang LM, Zeng Q, Liu X, Chen P, Guo XX, Ma LYZ, et al. 2019. Iron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chem. Geol. 525: 390-399.   DOI
8 Ray RR. 2016. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip. Toxicol. 9: 55-65.   DOI
9 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
10 Saha R, Nandi R, Saha B. 2011. Sources and toxicity of Hexavalent chromium. J. Coord. Chem. 64: 1782-1806.   DOI
11 Sani RK, Peyton BM, Smith WA, Apel WA, Petersen JN. 2002. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl. Microbiol. Biotechnol. 60: 192-199.   DOI
12 Viamajala S, Smith WA, Sam RK, Apel WA, Petersen JN, Neal AL, et al. 2007. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction. Bioresour. Technol. 98: 612-622.   DOI
13 Poulsen HV, Willink FW, Ingvorsen K. 2016. Aerobic and anaerobic cellulase production by Cellulomonas uda. Arch. Microbiol. 198: 725-735.   DOI
14 Gu WZ, Zheng DC, Li DP, Wei CC, Wang X, Yang QZM, et al. 2021. Integrative effect of citrate on Cr(VI) and total Cr removal using a sulfate-reducing bacteria consortium. Chemosphere 279: 130437.   DOI
15 Kulp TR, Hoeft SE, Miller LG, Saltikov C, Murphy JN, Han S, et al. 2006. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles lakes, California. Appl. Environ. Microbiol. 72: 6514-6526.   DOI
16 Widdel F. 1980. Anaerober Abbau von Fettsauren und Benzoesaure durch neu isolierte Arten sulfat-reduzierender Bakterien. Georg-August-Universitat zu Gottingen.
17 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.   DOI
18 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41: D590-596.   DOI
19 Stookey LL. 1970. Ferrozine - a new spectrophotometric reagent for iron Anal. Chem. 42: 779-781.
20 Rangaswamy S, Agblevor FA. 2002. Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl. Microbiol. Biotechnol. 60: 88-93.   DOI
21 Dobbin PS, Carter JP, Garcia-Salamanca San Juan C, von Hobe M, Powell AK, Richardson DJ. 1999. Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. FEMS Microbiol. Lett. 176: 131-138.   DOI
22 Lovley DR. 1987. Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol. J. 5: 375-399.   DOI
23 Scala DJ, Hacherl EL, Cowan R, Young LY, Kosson DS. 2006. Characterization of Fe(III)-reducing enrichment cultures and isolation of Fe(III)-reducing bacteria from the Savannah River site, South Carolina. Res. Microbiol. 157: 772-783.   DOI
24 Ehrenreich A, Widdel F. 1994. Anaerobic oxidation ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60: 4517-4526.   DOI
25 Viamajala S, Peyton BM, Sani RK, Apel WA, Petersen JN. 2004. Toxic effects of chromium(VI) on anaerobic and aerobic growth of Shewanella oneidensis MR-1. Biotechnol. Prog. 20: 87-95.   DOI
26 Charlet L, Bosbach D, Peretyashko T. 2002. Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chem. Geol. 190: 303-319.   DOI
27 Liu C, Gorby YA, Zachara JM, Fredrickson JK, Brown CF. 2002. Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal-reducing bacteria. Biotechnol. Bioeng. 80: 637-649.   DOI
28 List C, Hosseini Z, Meibom KL, Hatzimanikatis V, Bernier-Latmani R. 2019. Impact of iron reduction on the metabolism of Clostridium acetobutylicum. Environ. Microbiol. 21: 3548-3563.   DOI
29 Gerlach R, Field EK, Viamajala S, Peyton BM, Apel WA, Cunningham AB. 2011. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp strain ES6. Biodegradation 22: 983-995.   DOI
30 Jin Q. 2012. Energy conservation of anaerobic respiration. Am. J. Sci. 312: 573-628.   DOI
31 Hegler F, Posth NR, Jiang J, Kappler A. 2008. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol. Ecol. 66: 250-260.   DOI
32 Tschech A, Pfennig N. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137: 163-167.   DOI
33 Widdel F, Pfennig N. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395-400.   DOI
34 Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. 2004. ARB: a software environment for sequence data. Nucl. Acids Res. 32: 1363-1371.   DOI