• Title/Summary/Keyword: Faults diagnosis of induction motors

Search Result 63, Processing Time 0.026 seconds

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

Diagnostic system development for state monitoring of induction motor and oil level in press process system (프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발)

  • Lee, In-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.706-712
    • /
    • 2009
  • In this paper, a fault diagnosis method is proposed to detect and classifies faults that occur in press process line. An oil level automatic monitoring method is also presented to detect oil level. The FFT(fast fourier transform) frequency analysis and ART2 NN(adaptive resonance theory 2 neural network) with uneven vigilance parameters are used to achieve fault diagnosis in proposing method, and GUI(graphical user interface) program for fault diagnosis and oil level automatic monitoring using LabVIEW is produced and fault diagnosis was done. The experiment results demonstrate the effectiveness of the proposed fault diagnosis method of induction motors and oil level automatic monitor system.

A New Hybrid "Park's Vector - Time Synchronous Averaging" Approach to the Induction Motor-fault Monitoring and Diagnosis

  • Ngote, Nabil;Guedira, Said;Cherkaoui, Mohamed;Ouassaid, Mohammed
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.559-568
    • /
    • 2014
  • Induction motors are critical components in industrial processes since their failure usually lead to an unexpected interruption at the industrial plant. The studies of induction motor behavior during abnormal conditions and the possibility to diagnose different types of faults have been a challenging topic for many electrical machine researchers. In this regard, an efficient and new method to detect the induction motor-fault may be the application of the Time Synchronous Averaging (TSA) to the stator current Park's Vector. The aim of this paper is to present a methodology by which defects in a three-phase wound rotor induction motor can be diagnosed. By exploiting the cyclostationarity characteristics of electrical signals, the TSA method is applied to the stator current Park's Vector, allowing the monitoring of the induction motor operation. Simulation and experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the hybrid Park's Vector-TSA approach.

Design of Network-Based Induction Motors Fault Diagnosis System Using Redundant DSP Microcontroller with Integrated CAN Module (DSP 마이크로컨트롤러를 사용한 CAN 네트워크 기반 유도전동기고장진단 시스템 설계)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is includes of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module processes the stator current, voltage, temperatures, vibration signal of the motor.

Development of a Model-Based Motor Fault Detection System Using Vibration Signal (진동 신호 이용 모델 기반 모터 결함 검출 시스템 개발)

  • ;A.G. Parlos
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.874-882
    • /
    • 2003
  • The condition assessment of engineering systems has increased in importance because the manpower needed to operate and supervise various plants has been reduced. Especially, induction motors are at the core of most engineering processes, and there is an indispensable need to monitor their health and performance. So detection and diagnosis of motor faults is a base to improve efficiency of the industrial plant. In this paper, a model-based fault detection system is developed for induction motors, using steady state vibration signals. Early various fault detection systems using vibration signals are a trivial method and those methods are prone to have missed fault or false alarms. The suggested motor fault detection system was developed using a model-based reference value. The stationary signal had been extracted from the non-stationary signal using a data segmentation method. The signal processing method applied in this research is FFT. A reference model with spectra signal is developed and then the residuals of the vibration signal are generated. The ratio of RMS values of vibration residuals is proposed as a fault indicator for detecting faults. The developed fault detection system is tested on 800 hp motor and it is shown to be effective for detecting faults in the air-gap eccentricities and broken rotor bars. The suggested system is shown to be effective for reducing missed faults and false alarms. Moreover, the suggested system has advantages in the automation of fault detection algorithms in a random signal system, and the reference model is not complicated.

Development of Induction Motor Diagnosis Method by Variance Based Feature Selection and PCA-ELM (분산정보를 이용한 특징 선택과 PCA-ELM 기반의 유도전동기 고장진단 기법 개발)

  • Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.55-61
    • /
    • 2010
  • In this paper, we proposed selective extraction method of frequency information and PCA-ELM based diagnosis system for three-phase induction motors. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by variance As the next step, feature extraction is performed by principal component analysis (PCA). Finally, we used the classifier based on Extreme Learning Machine (ELM) with fast learning procedure. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

A Development of the Algorithm to Detect the Fault of the Induction Motor Using Motor Current Signature Analysis (전류분석을 이용한 유도 전동기의 결함분석 알고리듬 개발)

  • 신대철;정병훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.675-683
    • /
    • 2004
  • The motor current signature provides an important source of the information for the faults diagnosis of three-phase induction motor. The theoretical principles behind the generation of unique signal characteristics, which are indicative of failure mechanisms, are Presented. The fault detection techniques that can be used to diagnose mechanical Problems, stator and rotor winding failure mechanisms, and air-gap eccentricity are described. A theoretical analysis is presented which predicts the presence of unique signature patterns in the current that are only characteristics of the fault. The predictions are verified by experimental results from a special fault Producing test rig and on-site tests in a steel company. And this study have made new diagnostic algorithm for the operating induction motors with the test results. These developments are including the use of monitoring and analysis of electric current to diagnose mechanical and electrical problems and gave the precise test results automatically.

Rotor Fault Detection of Induction Motors Using Stator Current Signals and Wavelet Analysis

  • Hyeon Bae;Kim, Youn-Tae;Lee, Sang-Hyuk;Kim, Sungshin;Wang, Bo-Hyeun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.539-542
    • /
    • 2003
  • A motor is the workhorse of our industry. The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. Different internal motor faults (e.g., inter-turn short circuits, broken bearings, broken rotor bars) along with external motor faults (e.g., phase failure, mechanical overload, blocked rotor) are expected to happen sooner or later. This paper introduces the fault detection technique of induction motors based upon the stator current. The fault motors have rotor bar broken or rotor unbalance defect, respectively. The stator currents are measured by the current meters and stored by the time domain. The time domain is not suitable to represent the current signals, so the frequency domain is applied to display the signals. The Fourier Transformer is used for the conversion of the signal. After the conversion of the signals, the features of the signals have to be extracted by the signal processing methods like a wavelet analysis, a spectrum analysis, etc. The discovered features are entered to the pattern classification model such as a neural network model, a polynomial neural network, a fuzzy inference model, etc. This paper describes the fault detection results that use wavelet decomposition. The wavelet analysis is very useful method for the time and frequency domain each. Also it is powerful method to detect the features in the signals.

  • PDF

Comparing machine fault diagnosis performances on current, vibration and flux based smart sensors (전류, 진동 및 자속센서기반 스마트센서를 이용한 기계결함진단 성능비교)

  • Son, Jong-Duk;Tae, Sung-Do;Yang, Bo-Suk;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.809-816
    • /
    • 2008
  • With increasing demands for reducing cost of maintenance which can detect machine fault automatically; low cost and intelligent functionality sensors are required. Rapid developments, in semiconductor, computing, and communication have led to a new generation of sensor called "smart" sensors with functionality and intelligence. The purpose of this research is comparison of machine fault classification between general analyzer signals and smart sensor signals. Three types of sensors are used in induction motors faults diagnosis, which are vibration, current and flux. Classification results are satisfied.

  • PDF

A Design of Power Management and Control System using Digital Protective Relay for Motor Protection, Fault Diagnosis and Control (모터 보호, 고장진단 및 제어를 위한 디지털 보호계전기 활용 전력감시제어 시스템 설계)

  • Lee, Sung-Hwan;Ahn, Ihn-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.516-523
    • /
    • 2000
  • In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF