DOI QR코드

DOI QR Code

Development of Induction Motor Diagnosis Method by Variance Based Feature Selection and PCA-ELM

분산정보를 이용한 특징 선택과 PCA-ELM 기반의 유도전동기 고장진단 기법 개발

  • Received : 2010.03.23
  • Accepted : 2010.05.17
  • Published : 2010.08.31

Abstract

In this paper, we proposed selective extraction method of frequency information and PCA-ELM based diagnosis system for three-phase induction motors. As the first step for diagnosis procedure, DFT is performed to transform the acquired current signal into frequency domain. And then, frequency components are selected according to discriminate order calculated by variance As the next step, feature extraction is performed by principal component analysis (PCA). Finally, we used the classifier based on Extreme Learning Machine (ELM) with fast learning procedure. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

본 논문은 클래스 내와 클래스 간의 분산정보를 이용한 주파수 성분의 선택적 추출기법과 PCA-ELM 기반의 유도전동기 고장진단 시스템을 제안한다. 제안된 방법은 취득된 전류신호를 DFT에 의해 주파수 영역으로 변환한 후 분산정보를 이용하여 고장상태별로 차별성이 큰 순서대로 주파수 성분을 추출한다. 다음 단계로 선택된 주파수 성분에 대해서 PCA를 이용하여 고장상태별 특징들을 추출한다. 마지막 단계는 학습속도가 매우 우수한 ELM분류기에 의해 유도전동기의 상태를 진단하게 된다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.

Keywords

References

  1. S. Wu, T. Chow, “Induction machine fault detection using SOM-based RBF neural network,” IEEE Trans. Ind. Elect., vol. 51, no. 1, pp. 183-194, 2004. https://doi.org/10.1109/TIE.2003.821897
  2. W. T. Thomson, M. Fenger, “Current signature analysis to detect induction motor faults,” IEEE Ind. Applicat. Magazine, pp. 26-34, July/August 2001.
  3. Hua Su and et al, “Induction Machine Condition Monitoring Using Neural Network Modeling,” IEEE Trans. Industrial Electronics, vol. 54, no. 1, pp.241-264, 2007. https://doi.org/10.1109/TIE.2006.888786
  4. Antonino-Daviu, and et al, “Influence of Nonconsecutive Bar Breakages in Motor Current Signature Analysis for the Diagnosis of Rotor Faults in Induction Motors,” IEEE Trans. Energy Conversion, vol. 25, no. 1, pp.80-89, 2010. https://doi.org/10.1109/TEC.2009.2032622
  5. Van Tung Tran, Bo-Suk Yang, Myung-Suck Oh, Andy Chit Chiow Tan, “Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference,” Expert Systems with Applications, vol. 36, no. 9, pp.1840-1849, 2009. https://doi.org/10.1016/j.eswa.2007.12.010
  6. Vilas N. Ghate, Sanjay V. Dudul, “Optimal MLP neural network classifier for fault detection of three phase induction motor,” Expert Systems with Applications, vol. 37, no. 4, pp.3468-3481, 2010. https://doi.org/10.1016/j.eswa.2009.10.041
  7. Nejjari, M. H. Benbouzid, “Monitoring and diagnosis of induction motors electrical faults using a current Park’s vector pattern learning approach,” IEEE Trans. Ind. Applicat., vol. 36, no.3, pp. 730-735, 2000. https://doi.org/10.1109/28.845047
  8. Zhengping Zhang, and et al, “A Novel Detection Method of Motor Broken Rotor Bars Based on Wavelet Ridge,” IEEE Trans. on Energy Conversion, vol. 18, vol. 3, pp.417-423, 2003. https://doi.org/10.1109/TEC.2003.815851
  9. Zhongming Ye, and et al, “Current Signature Analysis of Induction Motor Mechanical Faults by Wavelet Packet Decomposition,” IEEE Trans. on Industrial Electronics, Vol. 50, No. 6, December, 2003.
  10. Richard O. Duda et al, Pattern Classification, John Wiley & Sons Inc, 2nd Ed., 2002.
  11. R. Casimir, and et al, “The Use of Feature Selection and Nearest Neighbors ruls for Faults Diagnostic in Induction Motors”, Engineering Applications of Artificial Intelligence, vol. 19, pp.169-177, 2006. https://doi.org/10.1016/j.engappai.2005.07.004
  12. G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, Vol. 70, No. 1-3, pp. 489-501, 2006. https://doi.org/10.1016/j.neucom.2005.12.126