• 제목/요약/키워드: Fault-current reduction

검색결과 82건 처리시간 0.027초

삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성 (Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System)

  • 김영민;임성훈;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술대회 논문집
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Operation characteristics of a fault current limiter by high speed interrupter and a superconducting element

  • Im, I.G.;Jung, I.S.;Choi, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권3호
    • /
    • pp.10-14
    • /
    • 2014
  • Due to continuous increase of electric power consumption, couple of resolutions for improving accuracy in power system like line separation are being studied. The increase of the power demand can cause problems such as supply difficulties of the electricity and broadband outages, failure, etc. When a fault occurs in the power system, a fault current also increases. Fault current creates problems like reduction of lifespan and failure on the power system. In order to resolve these problems, the reduction of initial fault current using the characteristics of superconducting element was applied to fault current limiter. We applied the system to high speed fault current limiter. We found that the superconducting element effectively reduced initial fault current and the fault current was limited by changing operation of high speed interrupter.

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

전력계통의 중성선에 적용된 초전도한류기의 대칭고장전류 저감방안 분석 (Analysis on Reduction Method of Symmetrical Fault Current in a Power System with a SFCL applied into Neutral Line)

  • 임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.148-152
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) applied into the neural line of a power system, which can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault, was reported to be the effective application location of the SFCL in a power system. However, the limiting operation for the symmetrical fault current like the triple line-ground fault is not effective because of properties of the balanced three-phase system. In this paper, the limiting method of the symmetrical fault current in a power system with a SFCL applied into neutral line was suggested. Through the short-circuit experiments of the three-phase fault types for the suggested method, the fault current limiting and recovery characteristics of the SFCL in the neutral line were analyzed and the effectiveness of the suggested method was described.

비대칭 고장전류 저감 기능을 갖는 초전도 한류기의 최적 저항 결정 방안 (A Decision Method for the Optimal Insertion Resistance of a Superconducting Fault Current Limiter with Reduction of an Asymmetric Fault Current)

  • 김창환;김규호;이상봉
    • 전기학회논문지
    • /
    • 제64권1호
    • /
    • pp.57-63
    • /
    • 2015
  • Fault currents characteristics contain decaying DC offset. First cycle peak value of fault currents is higher than steady-state fault current value. These characteristics can affect the operation of protective device. To reduce the asymmetric fault current, the method using a series connection of two hybrid-type Superconducting Fault Current Limiter(SFCL) components, an auxiliary SFCL and a main SFCL, has been proposed. The auxiliary SFCL limits the first half cycle fault current, while main SFCL limits the steady state fault currents. This paper proposed a decision method of the optimal insertion resistance of auxiliary and main SFCL components. To verify the effectiveness of proposed scheme, the various simulations are performed by using Electromagnetic Transient Program(EMTP).

비대칭 고장전류 저감 기능을 갖는 초전도 한류기 동작 방안 (Operational Method of Superconducting Fault Current Limiter with Reduction Function of Asymmetric Fault Current)

  • 김창환;서훈철;김규호;김철환;이상봉
    • 조명전기설비학회논문지
    • /
    • 제28권10호
    • /
    • pp.56-62
    • /
    • 2014
  • When fault currents contain decaying DC offset, the peak value of the fault current in the first cycle of the fault period is higher than the fault current during the steady-state period. To reduce the asymmetric fault current, this paper proposes an operation scheme using the series connection of two hybrid type Superconducting Fault Current Limiters (SFCLs) : an auxiliary SFCL and a main SFCL. The proposed method calculates the fault angle by comparing the zero-crossing time with fault detection time. According to the fault angle calculated, an auxiliary SFCL operates to reduce an asymmetric fault current during half a cycle after fault occurrence. After this process, the fault current is limited by a main SFCL. To confirm the usefulness of the proposed method, case studies using Electro-Magnetic Transients Program (EMTP)/Alternative Transient Program (ATP) Draw are perfomed.

개방철심형 고온초전도한류기의 동작 특성 (Operational Characteristics of a Superconducting Fault Current Limiter with an Open Core)

  • 이찬주;이승제;강형구;김태중;현옥배;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권1호
    • /
    • pp.40-44
    • /
    • 2001
  • Recently. the high-tc superconducting fault col-rent limiters (SFCL) are studied worldwide to be classified as a resistive type or an inductive type such as a magnetic shielding type and a inductive type. The high-tc SFCL wish an open core belongs to the magnetic shielding type SFCL. Unlike conventional magnetic shielding type SFCLS it uses the open core to reduce the mechanical vibrations and installation space, The high-tc SFCL with an open core was designed and manufactured by stacking three BSCCO 2212 tubes. It was tested in the maximum source voltage of 400 Vrms. The results such as the reduction of fault current and impedance of the SFCL are described in this paper. The results show that the fault current in the source voltage of 400 Vrms was reduced to be about 123 Apeak. about 3.9 times greater than the normal state current. Also, the impedance of the high-tc SFCL was about 9${\Omega}$ about 9 times greater than the normal state impedance. The impedance of the SFCL appears just after the fault, and its size is dependent on the source voltage. From the impedance, the inductance of the SFCL was calculated.

  • PDF

비대칭 고장전류 저감을 위한 초전도 한류기 동작 분석 (Asymmetry Components Reduction using Superconducting Fault Current Limiter Operation in Transient Period)

  • 이상봉;김철환;김규호;김재철;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.381-382
    • /
    • 2008
  • This paper presents a novel scheme for reducing an asymmetry current with SFCL (Superconducting Fault Current Limiter) operation during transient period, when a fault occurs in power systems. The main idea is installation an auxiliary SFCL with characteristics, which reduces the asymmetry fault current in first half cycle before the operating of main SFCL. For proper activities of SFCLs, the principle of asymmetry current nature is reviewed. A scheme of asymmetry components reduction with SFCL is then explained. The EMTP/ATPDraw model of SFCLs using MODELS language developed and simulated to verify the performance and effectiveness.

  • PDF

비대칭 고장전류에 따른 초전도 한류기 동작 분석 (An Analysis of Superconducting Fault Current Limiter Operation According to Asymmetry Fault Current)

  • 이상봉;김철환;김규호;김재철;현옥배
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.450-454
    • /
    • 2009
  • This paper analyzes a asymmetry current with SFCL (Superconducting Fault Current Limiter) operation during transient period, when a fault occurs in power systems. The principle of asymmetry current nature is reviewed and asymmetry components reduction with SFCL operation is explained. To verify the performance of SFCL, a EMTP/ATPDraw model of SFCLs using MODELS language developed and simulated. Throughout the simulation, results presents the main factors for reducing the asymmetry component of fault current are not a quenching time, but a limiting resistance of SFCL and fault initiated angle.

저항형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석 (The Analysis of Current Limiting Characteristics Acceding to Fault Angles in the Resistive Type High-Tc Superconducting Fault Current Limiter)

  • 박충렬;임성훈;박형민;이종화;고석철;최효상;한병성;현옥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.523-526
    • /
    • 2004
  • According to the continuous demand for power and the growth of electric power utilities, the electric power transmission capacity was increased. The increase of the electric power transmission capacity results in an increase of the fault current level a fault happened. So the superconducting fault current limiter(SFCL) has been reached as the countermeasure for the reduction of the fault current. In this paper, we investigate the fault currents characteristics of resistive type SFCL according to fault angles when AC power source applied. As the fault angles increase, the first peak value of fault current decreased lower. On the other hand, the power burden of SFCL increased.

  • PDF