• Title/Summary/Keyword: Fault mitigation

Search Result 54, Processing Time 0.025 seconds

Multipath detection in carrier phase differential GPS

  • Seo, Jae-Won;Lee, Hyung-Keun;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1239-1243
    • /
    • 2005
  • A multipath mitigation method using the fault detection and isolation technique is proposed for the CDGPS. The base station is assumed to be immune to the effect of the multipath. With this reasonable assumption, the effect of multipath in moving station is mitigated. For that, the double difference measurement is produced, and then another additional difference between code pseudorange and acclumulated carrier phase is calculated. The test statistic is constituted with those differences. The hypothesis testing is applied to that test statistic. The proposed test statistic makes use of the effect of multipath in code pseudoranges and it does not use time differences. Therefore the detection ability for multipath is improved in most environments. However, the increased number of differences makes the measurement noises larger. The performance of the method is compared with that of the conventional parity space method with code pseudorange.

  • PDF

Using the Under Voltage Load Shedding for Stability Enhancement of Power Systems Considering Induction Motor Load (유도전동기 부하 고려 시 저전압 부하차단을 이용한 전력계통 안정도 향상 방안)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Recently, proportion of the induction motor load is gradually increased. When a contingency in the power systems, it has been discovered phenomenon that the voltage is delayed recover caused mechanical characteristics of the induction motor load. It can be a serious impact on the voltage stability of the power system considering induction motor load. The scheme to mitigate this phenomenon tripping off the motors to prevent voltage drop and delayed voltage recovery on the load demand side. Fault induced delayed voltage recovery phenomenon is caused by stalling of small induction motor load in transmission level contingencies. In this paper, fault induced delayed voltage recovery phenomenon mitigation method implementation under voltage load shedding on the korean power system considering induction motor load.

Analysis of System Impact of the Distributed Generation Using EMTP with Particular Reference to Voltage Sag

  • Yeo, Sang-Min;Kim, Chul-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.122-128
    • /
    • 2004
  • With the advent of distributed generation, power systems are fundamentally impacted in regards to stability and power quality. Distributed generation has a positive impact on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has a negative impact on decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it becomes complicated to analyze a power system with distributed generation. The types of distributed generation are usually classified by both rotating machinery and the inverter-based system. In this paper, distributed generation is designed by rotating machinery, and the distributed system having a model of the distributed generation is simulated using EMTP. In addition, this paper presents the simulation results according to the types of distributed generation.

Analysis of the System Impact of Distributed Generation using EMTP

  • Yeo, Sang-Min;Kim, Il-Dong;Kim, Chul-Hwan;Aggarwal, Raj
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.4
    • /
    • pp.201-206
    • /
    • 2004
  • With the advent of distributed generation, power systems in general are impacted in regards to stability and power quality. Distributed generation has positive impacts on system restoration following a fault, higher reliability, and mitigation of effect due to voltage sag. However, distributed generation also has negative impacts on the decrease of reliability such as changes of protective device setting and mal-operation. Because bulk power systems consist of various sources and loads, it is complicated to analyze power systems that have distributed generation. The types of distributed generation usually are classified as the rotating machinery system and the inverter-based system. In this paper, distributed generation is designed as a synchronous generator, and the distribution system with its distributed generation model is simulated using EMTP. In addition, this paper shows the simulation results according to the types of distributed generation

Practical Construction of Tsunami Inundation Map Corresponding to Disaster Forecast/Warning Systems (지진해일 예경보에 따른 범람도의 실용적 작성)

  • Jeon, Young-Joon;Choi, Jun-Woo;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.775-778
    • /
    • 2008
  • In general, forecast tsunami heights announced for tsunami warning are computed by using a linear tsunami model with coarse grids which leads the underestimation of inundation area. Thus, an accurate tsunami inundation map corresponding to the forecast tsunami height is indispensible for an emergency evacuation plan. A practical way to construct a relatively accurate tsunami inundation map was proposed in this study for the quantitative forecast of inundation area. This procedure can be introduced as in the followings: The fault dislocations of potential tsunami sources generating a specific tsunami height near an interested area are found by using a linear tsunami model. Based on these fault dislocations, maximum inundation envelops of the interested area are computed and illustrated by using nonlinear inundation numerical model. In this study, the tsunami inundation map for Imwon area was constructed according to 11 potential tsunami sources, and the validity of this process was examined.

  • PDF

A Study on the FIDVR Mitigation Scheme using Dynamic Voltage Support by STATCOM (STATCOM을 활용한 FIDVR 완화 방안에 대한 연구)

  • Lee, Yunhwan;Jung, Seungmin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.208-213
    • /
    • 2018
  • In this paper, we studied the control strategy of applying STATCOM(static synchronous compensator) to mitigate the FIDVR(fault induced delayed voltage recovery) phenomenon. The proportion of motor loads is gradually increasing which might affect power system stability. Excessive reactive power consumption by the stall of the motor loads causes FIDVR phenomenon. In addition, the low inertia of the small HVAC(heating, ventilation and air conditioner) unit will not separate itself in the event of a contingency, causing system instability. For this reason, we have developed a control strategy that utilizes STATCOM efficiently through static and dynamic analysis. Case studies on a Korean power system have validated the performance of the proposed scheme under severe contingency scenarios. The results have verified that the proposed strategy can effectively mitigate FIDVR and improve the stability and reliability of the system.

An Investigation into the Impact on Voltage Sag due to Faults in Low Voltage Power Distribution Systems

  • Aggarwal R. K.
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Voltage sags are the most widespread quality issues affecting distribution systems. This paper describes in some detail the voltage sag characteristics due to different types and locations of fault in a practical low voltage power distribution system encountered in the UK. The results not only give utility engineers very useful information when identifying parts of the system most likely to pose problems for customer equipments, but also assist the facility personnel to make decisions on purchasing power quality mitigation equipment.

A Study on the TRV(BTF) of Circuit Breakers According to Install Current Limit Reactors (345kV 고장전류 저감을 위한 한류리액터 설치시 차단기 TRV(모선 고장시) 검토)

  • Kwak, J.S.;Park, H.S.;Shim, E.B.;Ryu, H.Y.;Lee, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.368-370
    • /
    • 2005
  • Due to the tendency towards large capacity and complexity of power system, an enhancement of power system equipment make a system impedance to be low in power system. Generally if an equivalent impedance of system becomes lower, a system stability will be better. But the fault current becomes very larger. The 345kV ultra-high voltage system will use current limit reactors(CLR) in a transmission line or a bus in substation to limit the magnitude of fault current. The CLR makes a significant contribution to the severity of the transient recovery voltage(TRV) experienced by feeder and bus circuit breakers on clearing feeder faults. Based on the conclusions of an investigation of actual circuit breaker failures while performing this duty, the mitigation of the transient recovery voltage associated with the reactors is described. Therefore in this article we simulated the TRV by EMTP at Bus Terminal Fault.

  • PDF

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants

  • Nidhin, T.S.;Bhattacharyya, Anindya;Behera, R.P.;Jayanthi, T.;Velusamy, K.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1589-1599
    • /
    • 2017
  • Field programmable gate arrays (FPGAs) are getting more attention in safety-related and safety-critical application development of nuclear power plant instrumentation and control systems. The high logic density and advancements in architectural features make static random access memory (SRAM)-based FPGAs suitable for complex design implementations. Devices deployed in the nuclear environment face radiation particle strike that causes transient and permanent failures. The major reasons for failures are total ionization dose effects, displacement damage dose effects, and single event effects. Different from the case of space applications, soft errors are the major concern in terrestrial applications. In this article, a review of radiation effects on FPGAs is presented, especially soft errors in SRAM-based FPGAs. Single event upset (SEU) shows a high probability of error in the dependable application development in FPGAs. This survey covers the main sources of radiation and its effects on FPGAs, with emphasis on SEUs as well as on the measurement of radiation upset sensitivity and irradiation experimental results at various facilities. This article also presents a comparison between the major SEU mitigation techniques in the configuration memory and user logics of SRAM-based FPGAs.