• 제목/요약/키워드: Fault current limiting

검색결과 346건 처리시간 0.028초

자속구속형 고온초전도 전류제한기 사고전류제한 특성 (Fault Current Limiting Characteristic of Flux-Lock Type HTSC Fault Current Limiter)

  • 임성훈;최명호;박복기;송재주;박대희;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.105-108
    • /
    • 2002
  • In this paper, we investigated the fault current limiting characteristic of flux-lock type High-Tc superconducting fault current limiter(HTSC-FCL), which is comprised of a flux-lock reactor and an external magnetic field coil covering the HTSC element In this HTSC-FCL, the initial limiting current level can be controlled by adjusting the inductance of the each coil. Furthermore, the fault current limiting characteristics of HTSC-FCL can be improved by applying 'the external magnetic field into the HTSC element We performed the computer simulation by numerical analysis about the flux-lock type HTSC-FCL and compared the results of experiment with simulation ones. We can obtain the same results from both the computer simulation and the experiment except for the time immediately after fault occurs.

  • PDF

사고각에 따른 자속구속형 전류제한기의 전류제한특성 (Current Limiting Characteristics of flux-lock Type High-lc Superconducting Fault Current Limiter According to fault Angles)

  • 박형민;최효상;조용선;임성훈;박충렬;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제18권8호
    • /
    • pp.747-753
    • /
    • 2005
  • We Investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter(SFCL) by fault angles. The flux-lock type SFCL consists of the primary and the secondary copper coils wound in parallel through the iron core and YBCO thin film. In this paper, the current limiting characteristics of the flux-lock type SFCL by fault angles in case of the subtractive and the additive polarity windings were compared and analyzed. The flux-lock type SFCL limited fault current more quickly as the fault angles increased. On the other hand, the initial power burden of the superconducting element during the fault increased as the fault angles increased. In addition, we found that the resistance of the flux-lock type SFCL in case of the subtractive polarity winding was more increased than that of the additive polarity winding. The peak current of the fault current in case of the subtractive polarity winding was larger than that of the additive polarity winding.

병렬연결된 두 코일의 자기결합을 이용한 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 분석 (Analysis on Current Limiting and Voltage Sag Compensating Characteristics of a SFCL using Magnetic Coupling of Parallel Connected Two Coils)

  • 임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.159-163
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the SFCL using magnetic coupling of two coils with parallel connection has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. In this paper, the current limiting and the voltage sag compensating characteristics of a SFCL using magnetic coupling of parallel connected two coils were analyzed. Through the analysis on the experimental results considering the winding direction of two coils, the SFCL designed with the additive polarity winding was shown to have the higher limited fault current than the SFCL designed with the subtractive polarity winding. In addition, it could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.

190 kVA급 초전도한류소자의 특성 (Characteristics of a 190 kVA Superconducting Fault current Limiting Element)

  • 마용호;이주영;박권배;오일성;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.

Analysis on Current Limiting Characteristics According to the Influence of the Magnetic Flux for SFCL with Two Magnetic Paths

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1909-1913
    • /
    • 2014
  • In this study, a superconducting fault current limiter (SFCL) having two magnetic paths was proposed, and its current limiting characteristics were analyzed. For the SFCL to effectively perform the current limiting operation, it must be designed considering the magnetic saturation of the E-I core. Further, the influence of the magnetic flux on its peak current limiting characteristics was investigated. In addition, the magnetic flux curves of the SFCL obtained from the fault current limiting experiments were analyzed, and the subtractive polarity winding case was observed to not only further reduce the saturation potential of the core but also perform the peak current limiting functions well when compared with the additive polarity winding case.

1선 지락사고에 대한 배전급 저항형 초전도 한류기의 전류제한특성 (Current Limiting Characteristics of a Resistive SFCL for a Single-line-to-ground Fault in the 22.9 kV System)

  • 최효상;황시돌;현옥배
    • 한국전기전자재료학회논문지
    • /
    • 제14권6호
    • /
    • pp.505-510
    • /
    • 2001
  • We simulated the current limiting characteristics of a resistive superconducting fault current limiter (SFCL) for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$, respectively, a resistive SFCL limited effectively the fault current to 2.27 kA in a half cycle without any DC components. The maximum quench resistance of an SFCL, 16Ω was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system, considering the operating cooperation of a protective relay and the current limiting performance of an SFCL.

  • PDF

이중퀜치를 이용한 삼상변압기형 한류기의 고장전류제한 동작 분석 (Analysis on Fault Current Limiting Operation of Three-Phase Transformer Type SFCL Using Double Quench)

  • 한태희;고석철;임성훈
    • 한국전기전자재료학회논문지
    • /
    • 제35권2호
    • /
    • pp.184-189
    • /
    • 2022
  • In this paper, the fault current limiting operations of three-phase transformer type superconducting fault current limiter (SFCL) using double quench, which consisted of E-I iron core with three legs wound by primary and secondary windings and two superconducting modules (SCMs), were analyzed according to three-phase ground fault types. To verify the effective operation of the three-phase transformer type SFCL using double quench, the test circuit for three-phase ground faults was constructed, and the fault current tests were carried out. Through analysis on the fault current test results, the different fault current limiting characteristics of three-phase transformer type SFCL using double quench from three-phase transformer type SFCL using three SCMs were discussed.

두 개의 자속경로를 갖는 직렬연결형 초전도한류기의 이중 피크전류제한 특성 (Double Peak Current Limiting Properties of Series Connection-Type SFCL with Two Magnetic Paths)

  • 고석철;한태희;임성훈
    • 조명전기설비학회논문지
    • /
    • 제28권7호
    • /
    • pp.62-68
    • /
    • 2014
  • We proposed a series connection-type superconducting fault current limiter(SFCL) using E-I core that can prevent the internal magnetic flux generation of cores during normal operation, and prevent the saturation of cores due to a sudden magnetic flux generation at the initial stage of fault occurrence while limiting the peak current. Through a short-circuit simulation experiment, we analyzed the operating status of the two superconducting elements and limiting characteristics according to the size of the fault current peak before and after the failure. Further, the double peak current limiting characteristics according to the winding directions as well as the current and the voltage of each coil were compared and analyzed.

변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 및 전압강하 보상 특성 (Current Limiting and Voltage Sag Compensation Characteristics of Flux-Lock Type SFCL Using a Transformer Winding)

  • 고석철
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.1000-1003
    • /
    • 2012
  • The superconducting fault current limiter (SFCL) can quickly limit the fault current shortly after the short circuit occurs and recover the superconducting state after the fault removes and plays a role in compensating the voltage sag of the sound feeder adjacent to the fault feeder as well as the fault current limiting operation of the fault feeder. Especially, the flux-lock type SFCL with an isolated transformer, which consists of two parallel connected coils on an iron core and the isolated transformer connected in series with one of two coils, has different voltage sag compensating and current limiting characteristics due to the winding direction and the inductance ratio of two coils. The current limiting and the voltage sag compensating characteristics of a SFCL using a transformer winding were analyzed. Through the analysis on the short-circuit tests results considering the winding direction of two coils, the SFCL designed with the additive polarity winding has shown the higher limited fault current than the SFCL designed with the subtractive polarity winding. It could be confirmed that the higher fault current limitation of the SFCL could be contributed to the higher load voltage sag compensation.