• 제목/요약/키워드: Fault Simulation and Analysis

검색결과 416건 처리시간 0.022초

수력 발전기 제어시스템의 계자상실 모델링과 시뮬레이션 (Modeling and Simulation of Loss of Excitation of Hydro Generator Control System)

  • 박철원
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.74-80
    • /
    • 2014
  • Generator protection device has to detects an internal fault conditions in generator and abnormal operating conditions must be due to the hazards. Loss of excitation may cause generator itself failure as well as serious operating problem in power system, and then requires an appropriate response of generator protection device. Details modeling of generator control system and analysis of transient states in generator are important for optimal operation in power plants. In addition, the fault simulation data are also used for testing the characteristics of IED. In this paper, the hydro generator control system using PSCAD/EMTDC, visual simulation for power systems, was modeled. The generator control system which is composed of generator, turbine, exciter, governor was implemented. The parameters of generator control system model were obtained from field power plant. Loss of excitation simulations were performed while varying the fixed load. Several signals analysis were also performed so as to analyze transients phenomena.

변압기보호계전 알고리즘 개발을 위한 변압기의 고장해석 (The fault analysis of transformer to develope protective relaying algorithm for transformer)

  • 서희석;신명철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.844-846
    • /
    • 1996
  • This paper deals with a simulation method of faults in a power transformer. Using the [R],[L] matrix supplied by the auxiliary routine of EMTP called BCTRAN, the turn to ground fault and turn to turn fault are simulated and the inrush condition is simulated using saturable transformer model. Data from simulations can be used to identify the response of the digital protection algorithms for transformer.

  • PDF

정풍량 공조시스템의 고장검출 및 진단 시뮬레이션 (Fault Detection and Diagnosis Simulation for CAV AHU System)

  • 한동원;장영수;김서영;김용찬
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.687-696
    • /
    • 2010
  • In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.

자속구속형 고온초전도 전류제한기의 인덕턴스 변화에 따른 전류제한 특성 분석 (Analysis of fault Current Limiting Characteristics due to Ratio of Inductances between Coil 1 and coil 2 in a Flux-lock Type SFCL)

  • 박충렬;임성훈;박형민;최효상;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.856-862
    • /
    • 2005
  • A flux-lock type SFCL consists of two coils, which are wound in parallel each other through an iron core, and a HTSC thin film connected in series with coil 2. If the current of the HTSC thin film exceeds its critical current by the fault accident, the resistance generated of the HTSC thin film, and thereby the fault current can be limited by the impedance of the flux-lock type SFCL. The amplitude of fault current can be set by the impedance of the flux-lock type SFCL. In this paper, we investigated the variance of the limiting current due to the ratio of inductances between coil 1 and coil 2 in the flux-lock type SFCL through the computer simulations and short circuit tests. In addition, both the simulation results and experimental ones were compared each other. From the comparison of both the results, the simulation results agreed well with the experimental ones.

Fault-Tolerant Steer-By-Wire 제어 시스템의 개발 (Development of a Fault-Tolerant Steer-By-Wire Control System)

  • 김재석;황운기;이운성
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-8
    • /
    • 2006
  • The Steer-By-Wire(SBW) system replaces complex mechanical linkages of the current steering system with electric motors, sensors, and electronic control units. However, the SBW system should guarantee its safety and reliability before commercialization, and therefore, a reliable and robust fault-tolerant technology has to be implemented. This paper proposes a fault-tolerant control algorithm for the SBW system. Based on careful analysis on propagation effects of sensor faults, a reliable fault-tolerant control strategy has been developed. The fault-tolerant controller consists of a fault detection part that monitors and detects faults in the steering wheel and road wheel sensors, and a reconfiguration part that switches to normal sensor signal based on fault detection information. It has been demonstrated by simulation that the proposed algorithm detects sensor faults accurately and enables reliable steering control under various dynamic fault situations.

Investigation and Simulation Study on the Cascading Trip-off Fault of a Large Number of Wind Turbines in China on May 14, 2012

  • Qiao, Ying;Lu, Zong-Xiang;Lu, Ji;Ruan, Jia-Yang;Wu, Lin-lin
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2240-2248
    • /
    • 2015
  • The integration of the large-scale wind power brings great challenge to the stability of the power grid. This paper investigates and studies the fault on May 14, 2012 of the large-scale cascading trip-off of wind turbines in North China. According to the characteristics of the voltage variation, the fault process is divided into three stages: the pre-event stage, the critical stage before cascading, and the cascading stage. The scenes in the fault are reproduced, using the full-size actual power system model. Simulation models of double-fed induction generators (DFIGs) and SVCs including protection settings and controller strategies are carefully chosen to find out the reason of voltage instability in each stage. Some voltage dynamic that have never been observed before in the faults of the same kind are analyzed in detail, and an equivalent voltage sensitive dynamic model of DFIG is proposed for the fast computation. The conclusions about the voltage dynamics are validated by the actual PMU observation evidence.

발전기의 고장 판별을 위한 웨이브릿 변환의 적용 (Application of Wavelet Transform for Fault Discriminant of Generator)

  • 박철원
    • 전기학회논문지P
    • /
    • 제64권1호
    • /
    • pp.35-40
    • /
    • 2015
  • Generators are the most complex and expensive single element in a power system. The generator protection relays should to minimize damage during fault states and must be designed for maximum reliability. A conventional CDR(Current Differential Relaying) technique based on DFT(Discrete Fourier Transform) filter have the disadvantages that the time information can lead to loss in the process of converting the signal from the time domain to the frequency domain. A WT(Wavelet transform) and WT analysis is known that it is possible with the local analysis of the fault and transient signal. In this paper, to overcome the defects in the DFT process, an application of WT for fault detection of generator is presented. This paper describes an selection of mother Wavelet to detect faults of generator. Using collected data from the fault simulation with ATPdraw, we analyzed the several mother Wavelet through the course of MLD(multi-level decomposition) using MATLAB software. Finally, it can be seen that the proposed technique using detail coefficient of Daubechies level 2 which can be fault discriminant of generator.

분산 시스템의 성능 모니터링과 레포팅 툴의 아키텍처 모델링 (Distributed System Architecture Modeling of a Performance Monitoring and Reporting Tool)

  • 김기;최은미
    • 한국시뮬레이션학회논문지
    • /
    • 제12권3호
    • /
    • pp.69-81
    • /
    • 2003
  • To manage a cluster of distributed server systems, a number of management aspects should be considered in terms of configuration management, fault management, performance management, and user management. System performance monitoring and reporting take an important role for performance and fault management. In this paper, we present distributed system architecture modeling of a performance monitoring and reporting tool. Modeling architecture of four subsystems are introduced: node agent, data collection, performance management & report, and DB schema. The performance-related information collected from distributed servers are categorized into performance counters, event data for system status changes, service quality, and system configuration data. In order to analyze those performance information, we use a number of ways to evaluate data corelation. By using some results from a real site of a company and from simulation of artificial workload, we show the example of performance collection and analysis. Since our report tool detects system fault or node component failure and analyzes performances through resource usage and service quality, we are able to provide information for server load balancing, in short term view, and the cause of system faults and decision for system scale-out and scale-up, in long term view.

  • PDF

혼합송전계통에서 재폐로 시행시 개폐과전압 해석 (Analysis of Switching Overvoltage on Operating Reclosing in Combined Transmission Systems)

  • 임광식;이종범;정채균;강지원;박흥석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.391-393
    • /
    • 2008
  • This paper is analysed by switching overvoltage on operating reclosing in 154 [kV] combined transmission systems. Combined transmission systems are modeled by EMTP/ATPDraw program. It is fault condition that simulate high resistance earth fault. The simulation is carried out considering variation of parameters such as resistance value of fault point and rate of underground line.

  • PDF

결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가 (Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis)

  • 조재균
    • 한국산업정보학회논문지
    • /
    • 제14권5호
    • /
    • pp.187-195
    • /
    • 2009
  • 결점나무 분석에서 불확실설 중요도 측도는 basic event 확률 ($q_i$)의 불확실성이 top event 확률 (Q)의 불확실성에 얼마나 많이 기여하는지를 나타내는 측도로서, top event 확률의 불확실성을 감소시키기 위하여 어떤 basic event 확률의 불확실성을 감소시키는 것이 효과적인지를 밝히는데 사용된다. $q_i$의 분산 $\upsilon_i$가 백분율 단위로 한 단위 변화될 때 Q의 분산 V의 변화량을 평가하는 측도가 불확실성 중요도 측도로서 많은 저자들에 의해 제안되었으며, 이 측도를 계산하기 위해서는 V와 ${\partial}V/{\partial}{\upsilon}_i$를 해석적인 방법이나 몬테칼로 시뮬레이션을 사용하여 계산해야 한다. 그러나 대규모 결점나무에 대해서 V와 ${\partial}V/{\partial}{\upsilon}_i$를 해석적인 방법으로 계산하는 것은 매우 복잡하며, 몬테칼로 시뮬레이션을 사용하여 V와 ${\partial}V/{\partial}{\upsilon}_i$의 안정적인 추정치를 얻는 것은 매우 어렵다. 본 연구에서는 불확실성 중요도 측도를 실험적인 방법을 이용하여 평가하기 위한 방법을 제안한다. 제안된 방법은 몬테칼로 시뮬레이션을 이용하는 방법에 비해 계산량이 매우 적으며, 불확실성 중요도의 안정적 인 추정치를 제공한다.