• Title/Summary/Keyword: Fault Safety

Search Result 814, Processing Time 0.03 seconds

The Fire Hazard of Screwed Electric Contacts Due to Mechanical Vibration at Low Voltage Equipment

  • Choi, Chung-Seog;Kim, Young-Seok;Kim, Hyang-Kon
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.18-23
    • /
    • 2005
  • There are many electrical connections in the electric apparatus and most fires due to a fault contact result from a failure or misuse of electric apparatus and installation. The fault contact happens between electrical connections by the loose and the mechanical vibration. In this paper, we have investigated thermal and electrical properties of screwed electric contacts due to the mechanical vibration. The exciter was connected to a signal generator and power amplifier that provided the vibration frequency and amplitude. The vibration, temperature and voltage data were sent to a data acquisition system (DAQ). In the case that fault contact took place, the arc happened between the screwed electric contact and electric wire, heat due to the arc was transmitted to the adjacent insulators, for which the oxide could be generated more. In addition, a spark was generated and the insulator began to melt. Thus, the possibility of electrical fire became the highest in this case. Finally, when the fault contact takes place due to vibration, the hazard of an electric accident is very high.

Development of Fuzzy Hybrid Redundancy for Sensor Fault-Tolerant of X-By-Wire System (X-By-Wire 시스템의 센서 결함 허용을 위한 Fuzzy Hybrid Redundancy 개발)

  • Kim, Man-Ho;Son, Byeong-Jeom;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The dependence of numerous systems on electronic devices is causing rapidly increasing concern over fault tolerance because of safety issues of safety critical system. As an example, a vehicle with electronics-controlled system such as x-by-wire systems, which are replacing rigid mechanical components with dynamically configurable electronic elements, should be fault¬tolerant because a devastating failure could arise without warning. Fault-tolerant systems have been studied in detail, mainly in the field of aeronautics. As an alternative to solve these problems, this paper presents the fuzzy hybrid redundancy system that can remove most erroneous faults with fuzzy fault detection algorithm. In addition, several numerical simulation results are given where the fuzzy hybrid redundancy outperforms with general voting method.

Comparative Study of the System Operational Method for Fault-Tolernace (Fault-Tolerance를 위한 시스템의 동작방식에 대한 비교 연구)

  • 양성현;이기서
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1279-1289
    • /
    • 1992
  • Fault-tolerant system in improved the reliability and safety by using hardware and software redundancy. Fault mask and detection, identification techniques are conditionally used with system's application areas. Here DMR system is operated with standby and fail-safe module method that has minimal hardware and software redundancy, then its reliablity and safety comparison is presented respectively. Also this paper proposed an effective methods of dealing with transient faults as compared system's MTTFs to transient faults tolerance capabilities of self-diagnosis program.

  • PDF

A Study on the Software Fault Modes and Effect Analysis for Software Safety Evaluation (소프트웨어 안전성 평가를 위한 소프트웨어 고장 유형과 영향 분석에 관한 연구)

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.115-130
    • /
    • 2012
  • These days, most of safety-critical systems, which are systems those failures or malfunction may result in death or serious injury to people, or loss or severe damage to social systems, or environmental harm, are being built of embedded software or loaded controlling software systems on computers, electrical and electronic components or devices. There are a lot kind of fault analysis methods to evaluate safety of the safety-critical systems equipped computers, electrical and electronic components or devices with software. However, the only assessment method to evaluate software safety of a safety-critical system is not enough to analysis properly on account of the various types and characteristic of software systems by progress of information technology. Therefore, this paper proposes the integrated evaluation method and carries out a case study for the software safety of safety-critical system which embedded or loaded software sizes are small and control response times are not sensitive by use of two security analysis methods which are Fault Tree Analysis (FTA) and Fault Modes and Effect Analysis (FMEA) for ubiquitous healthcare system.

The Design and Implementation of a Fault Diagnosis on an Electronic Throttle Control System (전자식 스로틀 제어시스템을 위한 오류 자기진단 기능 설계 및 구현)

  • Kang, Jong-Jin;Lee, Woo-Taik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.9-16
    • /
    • 2007
  • This paper describes the design and implementation of the fault diagnosis on the Electronic Throttle Control(ETC) System. The proposed fault diagnosis consists of an input signal, actuator and a processor diagnosis. The input signal diagnosis can detect the faults of the ETC system's input signals such as the position sensor fault, source voltage fault, load current fault, and desired position fault. The actuator diagnosis is able to detect the actuator fault due to the actuator aging and an obstacle which interfere in the movement of the actuator. The processor diagnosis detects the fault which prevents the microprocessor from operating the ETC software. In order to protect the breakdown of the ETC system and assure the driving safety, appropriate reactions are also proposed according to the detected faults. The safety and reliability of the ETC system can be improved by the proposed fault diagnosis.

Fault Detection Signal for Mechanical Seal of Centrifugal Pump (원심펌프용 메커니컬 씰 결함 검출 신호 특성)

  • Jeoung, Rae-Hyuck;Lee, Byung-Kon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.20-27
    • /
    • 2012
  • Mechanical seals are one of main components of high speed centrifugal pumps. So, it is very important to detect the faults (scratch, notch, indentation, wear) of mechanical seals since the damage of seal can cause a critical failures or accidents of machinery system. In the past, many researchers mainly performed to detect the seal fault using the time signals measured from sensors. Recently, studies are focused on the development of on-line real time monitoring system. But study on the feature parameters used for fault detection of mechanical seals has a little been performed. In this paper, we showed feature parameters extracted from accelerated and acoustic signals by using the discrete wavelet transform (DWT), alpha coefficient, statistical parameters. And also verified the possibility for fault detection of mechanical seal.

Securing Safety in Collaborative Cyber-Physical Systems Through Fault Criticality Analysis (협업 사이버물리시스템의 결함 치명도 분석을 통한 안전성 확보)

  • Hussain, Manzoor;Ali, Nazakat;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.287-300
    • /
    • 2021
  • Collaborative Cyber-Physical Systems (CCPS) are those systems that contain tightly coupled physical and cyber components, massively interconnected subsystems, and collaborate to achieve a common goal. The safety of a single Cyber-Physical System (CPS) can be achieved by following the safety standards such as ISO 26262 and IEC 61508 or by applying hazard analysis techniques. However, due to the complex, highly interconnected, heterogeneous, and collaborative nature of CCPS, a fault in one CPS's components can trigger many other faults in other collaborating CPSs. Therefore, a safety assurance technique based on fault criticality analysis would require to ensure safety in CCPS. This paper presents a Fault Criticality Matrix (FCM) implemented in our tool called CPSTracer, which contains several data such as identified fault, fault criticality, safety guard, etc. The proposed FCM is based on composite hazard analysis and content-based relationships among the hazard analysis artifacts, and ensures that the safety guard controls the identified faults at design time; thus, we can effectively manage and control the fault at the design phase to ensure the safe development of CPSs. To justify our approach, we introduce a case study on the Platooning system (a collaborative CPS). We perform the criticality analysis of the Platooning system using FCM in our developed tool. After the detailed fault criticality analysis, we investigate the results to check the appropriateness and effectiveness with two research questions. Also, by performing simulation for the Platooning, we showed that the rate of collision of the Platooning system without using FCM was quite high as compared to the rate of collisions of the system after analyzing the fault criticality using FCM.

Imbalanced sample fault diagnosis method for rotating machinery in nuclear power plants based on deep convolutional conditional generative adversarial network

  • Zhichao Wang;Hong Xia;Jiyu Zhang;Bo Yang;Wenzhe Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2096-2106
    • /
    • 2023
  • Rotating machinery is widely applied in important equipment of nuclear power plants (NPPs), such as pumps and valves. The research on intelligent fault diagnosis of rotating machinery is crucial to ensure the safe operation of related equipment in NPPs. However, in practical applications, data-driven fault diagnosis faces the problem of small and imbalanced samples, resulting in low model training efficiency and poor generalization performance. Therefore, a deep convolutional conditional generative adversarial network (DCCGAN) is constructed to mitigate the impact of imbalanced samples on fault diagnosis. First, a conditional generative adversarial model is designed based on convolutional neural networks to effectively augment imbalanced samples. The original sample features can be effectively extracted by the model based on conditional generative adversarial strategy and appropriate number of filters. In addition, high-quality generated samples are ensured through the visualization of model training process and samples features. Then, a deep convolutional neural network (DCNN) is designed to extract features of mixed samples and implement intelligent fault diagnosis. Finally, based on multi-fault experimental data of motor and bearing, the performance of DCCGAN model for data augmentation and intelligent fault diagnosis is verified. The proposed method effectively alleviates the problem of imbalanced samples, and shows its application value in intelligent fault diagnosis of actual NPPs.

Radar, Vision, Lidar Fusion-based Environment Sensor Fault Detection Algorithm for Automated Vehicles (레이더, 비전, 라이더 융합 기반 자율주행 환경 인지 센서 고장 진단)

  • Choi, Seungrhi;Jeong, Yonghwan;Lee, Myungsu;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.32-37
    • /
    • 2017
  • For automated vehicles, the integrity and fault tolerance of environment perception sensor have been an important issue. This paper presents radar, vision, lidar(laser radar) fusion-based fault detection algorithm for autonomous vehicles. In this paper, characteristics of each sensor are shown. And the error of states of moving targets estimated by each sensor is analyzed to present the method to detect fault of environment sensors by characteristic of this error. Each estimation of moving targets isperformed by EKF/IMM method. To guarantee the reliability of fault detection algorithm of environment sensor, various driving data in several types of road is analyzed.

A Study on the Ground Fault Diagnosis System of Power Station DC Power line (발전소 직류전선로의 지락안전진단 시스템에 관한 연구)

  • 안영주;김남호;이형기
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 1997
  • There are two kinds of ground fault diagonosis system(GFD), which are for AC and DC power line. The ground fault current of a DC power line Is, first, analyzed for a description of a GFD system for DC power line and then the construction method of the GFD system, which could be processed and analyzed a ground fault current, are explained. Main functions of the system are that the detected ground fault current could be converted to the line insulation resistance by a program and saved in the system memory continuously. Finally a DC power line insulation safety could be decide by a change of the saved Insulation resistance for a given time. This system can detect the ground fault resistance to 100㏀.

  • PDF