• 제목/요약/키워드: Fault Protection system

검색결과 418건 처리시간 0.035초

비접지 배전 계통에서 지락사고 시 고장구간 분리 및 복구를 위한 새로운 알고리즘 (A New Algorithm of The Line to Ground Fault Section Isolation & Restoration in Ungrounded Distribution Power System)

  • 최인선;최면송;임성일;이승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.550-555
    • /
    • 2004
  • Fault section isolation and service restoration are very important for function of DAS. In Japan, a progressive protection method is used for the line to ground fault section isolation and service restoration. But the progressive protection method has a drawback that the customer will experience outage time and that the rate in use of the feeder is not over 50%. This paper presents a new Service Restoration Algorithm which is for the line to ground fault section isolation and service restoration method for a ungrounded distribution system. If the proposed algorithm is used, the rate in use of the feeder can improve than before because a distribution system can change multi connection of feeder and the customer's outage time can be reduced. The proposed algorithm has been successfully tested in a distribution system.

FACTS 보상 송전선의 동적 해석을 통한 송전선 보호 방안 개선 (Improvement of Line Protection Methods by Dynamic Analysis on a FACTS-compensated transmission line)

  • 임정욱
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권12호
    • /
    • pp.573-579
    • /
    • 2005
  • Dynamic analysis of a transmission line which is compensated by a FACTS device such as STATCOM, SSSC and UPFC is carried out in this paper and the impacts on conventional line protection methods such as the DCPM (Differential Current Protection Method) and the DPM (Distance Protection Method) are reviewed. A refined DCRM is proposed to detect faults properly regardless of the FACTS operation. The proposed method is applied to a FACTS-compensated line with a variety of faults and is verified by simulation results. An adaptive DPM on a FACTS-compensated line was proposed previously in the literature. In order to emphasize the necessity of the modified DPM, the conventional DPM is applied to a FACTS-compensated system. Significant factors such as fault types, fault locations, and fault resistances as well as FACTS device types are considered for relaying setting.

배전계통에 연계된 열병합발전 시스템의 개선된 보호협조 방안에 관한 연구 (Advanced Protective Coordination Schemes of Utility Interconnected Cogeneration Systems)

  • 최준호;정성교;추동욱;김낙경;손학식;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권6호
    • /
    • pp.280-288
    • /
    • 2000
  • Recently, there has been growing interest in utilizing cogeneration(COGN) systems with a high-energy efficiency due to the increasing energy consumption and the lacking of energy resource. But an insertion of COGN system to existing power distribution system can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power of COGN, especially in protective coordination. A study on a proper coordination with existing one is being required. The existing power distribution system is operated with radial type by one source and protection system is composed based on unidirectional power source. But an Insertion of COGN system to power distribution system change existing unidirectional power source system to bidirectional power source. Therefore, investigation to cover whole field of power distribution system must be accomplished such as changing of protection devices rating by increasing fault current, reevaluation of protective coordination. In this paper, simulation using PSCAD/EMTDC was accomplished to analyze effect of COGIN on distribution fault current. Also, the existing protection system of 22.9[kV] power distribution system and customers protection system to protect of COGIN was analyzed and the study on protective coordination between of two protection system accomplished.

  • PDF

발전기 고장진단을 위한 디지털보호계전 시스템 설계 (A Design on the Digital Protective Relay System for Generator Fault Diagnosis)

  • 이성환;장낙원;이동영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.717-718
    • /
    • 2008
  • We developed the protection program for the generator fault protection system and each module of the digital protective relay H/W for loading the protection program. The protective algorithm for the generator is 51, 51G/N, 46P/N, 47P/N, 50G/N, and 32, and we developed each fault protection program. And we must design high efficiency microprocessor, CT, and PT for realtime measuring, relaying and high accuracy of measurement, also. From now on digital protective relay must be operated with integrated management systems. For this point, we must load various industrial protocol on the digital protective relay. In this research, we developed each protective relay H/W module according to above conditions. And we designed real-time operating system in order that each protective algorithm is operated with realtime processing on the H/W system.

  • PDF

페트리네트를 이용한 전력계통의 보호시스템 모델링과 고장진단 (Protection Systems Modeling and Fault Diagnosis of Power System Using Petri Nets)

  • 최진묵;노명균;홍상은;오용택
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1136-1138
    • /
    • 1999
  • This paper describes a new method of the modeling of protection system and fault diagnosis in power systems using Petri nets. The Petri net models of protection system are compose of the operating process of protective devices and the fault diagnosis process. Fault diagnosis model which makes use of the nature of Petri net is developed to overcome the drawbacks of methods that depend on operator knowledge. The proposed method can reduce processing time and increase accuracy when compared with the traditional methods. And also this method covers online processing of real-time data from SCADA.

  • PDF

±750[V] 직류배전망의 고장전류 산정에 관한 연구 (A Study on Fault Current Calculation of ±750[V] DC Distribution Grid)

  • 이경민;박철원
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1286-1291
    • /
    • 2018
  • In recent years, the proliferation of DER (distributed energy resources) is progressing rapidly. In particular, research on LVDC distribution grid with various advantages has begun. In order to commercialize this LVDC grid, direct current protection method should be established by analysis of DC faults. Recently, the development of HSCB (high-speed circuit breaker) for new ${\pm}750[V]$ LVDC grid has been researched. This paper deals with the calculation of the maximum short-circuit fault current of the HSCB as a part of the development of HSCB for the LVDC distribution grid. First, modeling using PSCAD was carried out for PV array with BESS on the Gochang Power Test Center system. Next, to calculate the rated capacity of HSCB, fault currents were calculated and the characteristics were analyzed through fault simulations. Thus, this study results can help to establish short-circuit capacity calculation of HSCB and protection plan for DC protection relay system.

태양광 연계 계통의 저전압 보호 기준 정립 (The Undervoltage Protection of Distribution System with Photovoltaic System)

  • 서훈철;김철환;윤영민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.438_439
    • /
    • 2009
  • This paper analyzes the undervoltage protection based on the dynamic stability of a PV system at fault conditions. A 3 MW PV system is modeled by Matlab/Simulink. Then, the distribution system interconnected with the PV system is modeled. This paper simulates the various fault types and analyzes the stability of the PV system at fault conditions. It is concluded that the undervoltage protection of the grid-connected PV system in Korea standard needs to be modified based on the results of the stability analysis.

  • PDF

적응형 퍼지 시스템에 의한 송전선로보호의 고장검출 계전기법 (Fault Detection Relaying for Transmission line Protection using ANFIS)

  • 전병준
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.538-544
    • /
    • 1999
  • 본 논문에서는 송전선로의 보호를 위하여 적응형 퍼지 시스템을 도입하여 고장 유형 판별부와 고장점 추정부의 두 부분으로 구성된 새로운 고장검출기법을 개발하였다. 제안된 시스템의 퍼지 입력변수로는 전류의 정상분과 영상분 그리고 실효치를 선정하였으며 신경회로망의 학습방법에 의하여 전건부와 후건부가 적절하게 조정되었다. 제시된 기법의 효용성을 입증하기 위하여 전자과도 해석 프로그램인 EMTP로부터 수집된 데이터를 활용하였다. 시뮬레이션 결과 제안된 기법은 고장유형이 정확하게 판별되었으며 고장점 추정이 개선되었다.

  • PDF

고무차륜시스템에서의 지락보호를 위한 급전선로 절연과 부극전위와의 영향 분석 (An Analysis of Influence Between the Power Feeding Line Insulation and Negative Rail Potential for the DC Ground Fault Protection in the Rubber Wheel System)

  • 정호성;신승권;김형철;박영;조상훈
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.577-583
    • /
    • 2013
  • We have analyzed influence of potential rise in negative bus, which caused by decrease of power feeding line insulation, upon protecting method of DC ground protection device which detecting potential rise between negative bus and ground in order to detect ground fault in the rubber wheel system. For this purpose, we proposed negative potential equation between negative bus and ground and calculated negative potential according to system condition changes by estimating power feeding line insulation changes in steel wheel system and rubber wheel system, and equalizing DC power feeding system when ground fault occurred. Also, in order to estimate negative potential of real system, we modeled the rubber wheel system, and simulated normal status, grounding fault occurrence and power feeding line insulation changes. In normal status, negative potential did not rise significantly regardless of vehicle operation. When ground fault occurred, negative potential rose up over 300V regardless of fault resistance. However, we also observed that negative potential rose when power feeding line insulation dropped down under $1M{\Omega}$. In conclusion, our result shows that in case of rubber wheel system unlike steel wheel system, relay will be prevented maloperation and insulation status observation can be ensured when ground over voltage relay will be set 200V ~ 300V.

풍력발전단지 보호를 위한 내외부 고장 판별 알고리즘 (A Protection Algorithm Discriminating Between Internal and External Faults for Wind Farms)

  • 권영진;강상희
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.854-859
    • /
    • 2007
  • A wind farm consists of many wind generator(WG)s therefore, it is generally a complex power system. A wind farm as a distributed generation(DG) affects utility power system. If a conventional protection schemes are applied, it is difficult to detect faults correctly and the schemes can't provide proper coordination in some cases. This paper presents a protection algorithm for a wind farm which consists of a looped collection circuit. Because the proposed algorithm can distinguish between an internal fault and an external fault in a wind farm, The proposed algorithm can disconnect the faulted section in a wind farm. This algorithm is based on an overcurrent protection technique with the change of the ratio of the output current of a generator to the current of the looped line connected to each generator to collect the each generator's power. In addition, operating time of the algorithm is shortened by using the voltage drop at a generator collection point. The performance of the proposed algorithm was verified under various fault conditions using PSCAD/EMTDC simulations.