• Title/Summary/Keyword: Fault Detector

Search Result 73, Processing Time 0.024 seconds

A Study on the Built-in Test Circuit Design for Parallel Testing of CAM(Content Addressable Memory) (CAM(Content Addressable Memory)의 병렬테스팅을 위한 Built-in 테스트회로 설계에 관한 연구)

  • 조현묵;박노경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1038-1045
    • /
    • 1994
  • In this paper, algorithm and built-in test circuit for testing all PSF(Pattern Sensitive Fault) occuring in CAM(Content Addressable Memory) are proposed. That is, built-in test circuit that uses minimum additional circuit without external equipment is designed. Additional circuit consist`s of parallel comparator, error detector, and modified decoder for parallel testing. Besides, the study on eulerian path for effectiv test pattern is carried out simultaneously. Consequently, using proposed algorithm, we can test all contents of CAM with 325+2b(b:number of bits) operations regardless of number of words. The area occupied by test circuit is about 7.5% of total circuit area.

  • PDF

Collaborative Wireless Sensor Networks for Target Detection Based on the Generalized Approach to Signal Processing

  • Kim, Jai-Hoon;Tuzlukov, Vyacheslav;Yoon, Won-Sik;Kim, Yong-Deak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1999-2005
    • /
    • 2005
  • Collaboration in wireless sensor networks must be fault-tolerant due to the harsh environmental conditions in which such networks can be deployed. This paper focuses on finding signal processing algorithms for collaborative target detection based on the generalized approach to signal processing in the presence of noise that are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor network. Two algorithms, namely, value fusion and decision fusion constructed according to the generalized approach to signal processing in the presence of noise, are identified first. When comparing their performance and communication overhead, decision fusion is found to become superior to value fusion as the ratio of faulty sensors to fault free sensors increases. The use of the generalized approach to signal processing in the presence of noise under designing value and decision fusion algorithms in wireless sensor networks allows us to obtain the same performance, but at low values of signal energy, as under the employment of universally adopted signal processing algorithms widely used in practice.

  • PDF

Enhanced Dynamic Response of SRF-PLL System in a 3 Phase Grid-Connected Inverter (3상 계통연계형 인버터를 위한 SRF-PLL 시스템의 동특성 개선)

  • Choi, Hyeong-Jin;Song, Seung-Ho;Jeong, Seung-Gi;Choi, Ju-Yeop;Choy, Ick
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.134-141
    • /
    • 2009
  • The new method is proposed to improve the dynamics of the phase angle detector during abrupt voltage dip caused by a grid fault. Usually, LPF(low pass filter) is used in the feedback loop of SRF(Synchronous Reference Frame) - PLL (Phase Locked Loop) system because the measured grid voltage contains harmonic distortions and sensor noises. A better transient response can be obtained with the proposed design method for SRF-PLL by the analysis of linearized model of the PLL system including LPF. Furthermore, in the proposed method, the controller gain and LPF cut-off frequency are changed from normal value to transient value when the voltage disturbance is detected. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the experiment.

Fault Monitoring System for Cables Using a Compact Impedance Analyzer (소형 임피던스 분석기를 이용한 케이블의 결함 감시 시스템)

  • Yoon, Chai-Won;Yong, Hwan-Gu;Kim, Kwangho;Nah, Wansoo;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.872-879
    • /
    • 2017
  • This work presents a cable fault monitoring system based on the differential frequency domain reflectometry using a compact impedance analyser which is composed of a direct digital synthesizer, an op amp and a gain/phase detector with a micro controller. The proposed system can replace expensive vector network analysers for frequency domain reflectometry and therefore be deployed in sensor networks for long term multi-point cable monitoring. Effectiveness of the system is experimentally confirmed by diagnosing the status of the power cable.

Characteristic Analysis and Configuration of the Protection System to Improve the Safety of the BIPV System (BIPV 시스템의 안전성 향상을 위한 보호시스템 구성 및 특성 분석)

  • Seok-Hwan Cho;Jae-Sub Ko;Dae-Kyong Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.591-599
    • /
    • 2024
  • This paper presents the configuration and characteristic analysis of the protection system to improve the safety of the building integrated photovoltaic(BIPV) system. BIPV is a solar power system installed in buildings. Since the BIPV system is installed in buildings, there is a high risk of electric shock and fire accidents. Therefore, in order to improve the safety of BIPV, a protective system is required to block or quickly detect risk factors. In this paper, as a protection system to improve the safety of the BIPV system, it is composed of a rapid shutdown (RSD) that can quickly separate the PV system to prevent fire and electric shock accidents and a system to detect Arc faults that cause PV system fires. RSD and Arc Fault Detector analyzed the operating characteristics according to each condition and confirmed that the safety of the BIPV system can be improved through this.

A Study on Measurement and Analysis of Pilot Channel Power at CDMA Communication Network (CDMA통신망에서 파일롯 채널전력 측정 및 분석에 관한 연구)

  • Jeong, Ki-Hyeok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.31-39
    • /
    • 2007
  • In this paper, a system for real-time or periodic measurement and analysis of RF parameters such as forward transmit power and pilot power in CDMA base station systems is proposed. Such RF characteristic parameter measurement can be prevented from system fault and used to achieve optimal service quality and maximum investment return through cell coverage expansion, subscriber capacity increase and so on. For forward power measurement, the local oscillator frequency for the detector is varied so that the transmit power for all channels can be measured. The channel power measurement can be used to analyze the variation in transmit power for changes in voice traffic. By comparing to forward $E_c/I_o$, the pilot channel power can be deducted, which can be used to determine uy degradation in transmit section modules such as the high dover amplifier. Since an accurate analysis of carefully measured data using the CDMA level detector must be made, the system is designed so that measurement errors due to changes in crest factor with modulation method can be overcome.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

A Study on the Current Detector with Non Contact Type (비접촉식 전류 검출 장치에 관한 연구)

  • Kim, Ki-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.351-356
    • /
    • 2018
  • Commonly, a live-line alarm can be used to measure the electric field strength of a high-voltage system to calculate its current, but it is hard to detect the electric field of shielded cables or concealed structures, such as underground distribution cables. Current sensors can detect the magnetic field in a single core wire, but they cannot determine the magnetic field about a double-core wire because the currents flow in opposite directions. Therefore, it is very difficult to detect certain current problems, such as a fault current in an extension line comprised of a double line. In this paper, to ultimately develop a sensor that can detect the current regardless of line conditions, we used a simulation to determine the concentration of the magnetic field dependent on the distribution of the external magnetic field and the path of each line's core.

Distributed Real-time Simulation for the performance analysis of Fault Detector (고장 탐지 방법의 성능 분석을 위한 분산 실시간 시뮬레이션)

  • 노진홍;홍영식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.82-84
    • /
    • 2002
  • 신뢰성이 높은 분산 시스템은 고장 발생 시 고장을 탐지하고, 다른 관련된 노드들에게 고장을 알려주어서 적절한 처리를 할 수 있어야 한다. 기존의 act 와 time-out 을 사용한 고장 탐지방법은 수신되지 않는 ack 에 대한 부하가 높은 단점을 가지고 있다. 높은 신뢰성을 요구하는 분산 실시간 시스템에서는 데드라인을 준수하기 위해 고장처리에 대한 time-bound 를 결정할 수 있어야 하므로, 기존의 ack 와 time-out 에 기반한 고장방법을 사용하기에 부적절하다. 따라서 본 논문에서는 신뢰성 있는 분산 실시간 멀티캐스트 프로토착에 결합된 고장 탐지 기법으로서 사용될 기존의 고장 탐지 방법을 대상으로 고장 탐지 방법을 실험하고, 그 결과를 분석하여 고장탐지 및 고장처리 지연시간이 데드라인을 보장할 수 있는지 검사한다.

  • PDF

Sensor Failure Detection and Accommodation Based on Neural Networks (신경회로망을 이용한 센서 고장진단 및 극복)

  • 이균정;이봉기
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1998
  • This paper presents a neural networks based approach for the problem of sensor failure detection and accommodation for ship without physical redundancy in the sensors. The designed model consists of two neural networks. The first neural network is responsible for the failure detection and the second neural network is responsible for the failure identification and accommodation. On the yaw rate sensor of ship, simulation results indicates that the proposed method can be useful as failure detector and sensor estimator.

  • PDF