• Title/Summary/Keyword: Fault Detection and Isolation(FDI)

Search Result 77, Processing Time 0.026 seconds

Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method (다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어)

  • Hwang, Nam-Eung;Kim, Byung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we proposed an active fault tolerant control (AFTC) method for the position control of a quadrotor with complete loss of effectiveness of one motor. We obtained the dynamics of a quadrotor using Lagrangian equation without small angle assumption. For detecting the fault on a motor, we designed a fault detection module, which consists of the fault detection and diagnosis (FDD) module and the fault detection and isolation (FDI) module. For the FDD module, we designed a nonlinear observer that observes the states of a quadrotor based on the obtained dynamics. Using the observed states of a quadrotor, we designed residual signals and set the appropriate threshold values of residual signals to detect the fault. Also, we designed an FDI module to identify the fault location using the designed additional conditions. To make a quadrotor track the desired path after detecting the fault of a motor, we designed a fault tolerant controller based on the multiple sliding surface control (MSSC) technique. Finally, through simulations, we verified the effectiveness of the proposed AFTC method for a quadrotor with complete loss of effectiveness of one motor.

FDI observer design for linear system via STWS

  • Ahn, Pius;Kim, Min-Hyung;Kim, Jae-Il;Lee, Moon-Hee;Ahn, Doo-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1423-1427
    • /
    • 1997
  • This paper deals with an algebraic approach to FDI observer design procedure. In general, FDI observer can be designed a sLuenbrger-type and equations for unknown input and actuator fault estimation include derivation of system outputs which is not available from the measurement directly. At this point, this paper presents STWS approach which can convert the derivation procedure to the recursive algebraic form by using its orthogonality and disjointess to alleviate such problems.

  • PDF

Real Time Fault Diagnosis of UAV Engine Using IMM Filter and Generalized Likelihood Ratio Test (IMM 필터 및 GLRT를 이용한 무인기용 엔진의 실시간 결함 진단)

  • Han, Dong-Ju;Kim, Sang-Jo;Kim, Yu-Il;Lee, Soo-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.541-550
    • /
    • 2022
  • An effective real time fault diagnosis approach for UAV engine is drawn from IMM filter and GLRT methods. For this purpose based on the linear diagnosis model derived from engine dynamic performance analysis the Kalman filter for residual estimation and each method are applied to the fault diagosis of the actuator for engine control sensors. From the process of the IMM filter application the effective FDI measure is obtained and the state responses due to actuator fault are estimated. Likewise from the GLRT method the fault magnitudes of actuator and sensors are estimated associated with some FDI functionings. The numerical simulations verify the effectiveness of the IMM filter for FDI and the GLRT in estimating the fault magnitudes of each fault mode.

Fault Diagnosis of Linear Systems Based on Parameter Estimation and Statistical Method (파라미터추정과 통계적방법에 의한 선형 시스템의 고장진단)

  • 이인수
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.769-772
    • /
    • 1999
  • In this paper we propose an FDI(fault detection and isolation) algorithm to detect and isolate single faults in linear systems. When a change in the system occurs the errors between the system output and the estimated output cross a threshold, and once a fault in the system is detected, the FCFM statistically isolates the fault by using the error between each neural network based fault model output and the system output.

  • PDF

Integrating Fuzzy based Fault diagnosis with Constrained Model Predictive Control for Industrial Applications

  • Mani, Geetha;Sivaraman, Natarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.886-889
    • /
    • 2017
  • An active Fault Tolerant Model Predictive Control (FTMPC) using Fuzzy scheduler is developed. Fault tolerant Control (FTC) system stages are broadly classified into two namely Fault Detection and Isolation (FDI) and fault accommodation. Basically, the faults are identified by means of state estimation techniques. Then using the decision based approach it is isolated. This is usually performed using soft computing techniques. Fuzzy Decision Making (FDM) system classifies the faults. After identification and classification of the faults, the model is selected by using the information obtained from FDI. Then this model is fed into FTC in the form of MPC scheme by Takagi-Sugeno Fuzzy scheduler. The Fault tolerance is performed by switching the appropriate model for each identified faults. Thus by incorporating the fuzzy scheduled based FTC it becomes more efficient. The system will be thereafter able to detect the faults, isolate it and also able to accommodate the faults in the sensors and actuators of the Continuous Stirred Tank Reactor (CSTR) process while the conventional MPC does not have the ability to perform it.

FDI performance Analysis of Inertial Sensors on Multiple Conic Configuration (다중 원추형으로 배치된 관성센서의 FDI 성능 분석)

  • Kim, Hyun Jin;Song, Jin Woo;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.943-951
    • /
    • 2015
  • Inertial sensors are important components of navigation system whose performance and reliability can be improved by specific sensor arrangement configuration. For the reliability of the system, Fault Detection and Isolation (FDI) is conducted by comparing each signal of arranged sensors and many arrangement configuration were suggested to optimize FDI performance of the system. In this paper, multiple conic configuration is suggested with optimal navigation condition and its FDI performance is analyzed by established Figure Of Merit (FOM) under the condition for navigation optimality. From FOM comparison, the multiple conic configuration is superior to former one in point of FDI.

Performance Improvement of MOS type FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.410-413
    • /
    • 1998
  • A passive approach for enhancing fault detection and isolation performance of multiple observer based fault detection isolation schemes(FDIS) is proposed. The FDIS has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises of a rule base and fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic and threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rule base. The suggested scheme is applied for the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

Accommodation Rule Based on Navigation Accuracy for Double Faults in Redundant Inertial Sensor Systems

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.329-336
    • /
    • 2007
  • This paper considers a fault accommodation problem for inertial navigation systems (INS) that have redundant inertial sensors such as gyroscopes and accelerometers. It is wellknown that the more sensors are used, the smaller the navigation error of INS is, which means that the error covariance of the position estimate becomes less. Thus, when it is decided that double faults occur in the inertial sensors due to fault detection and isolation (FDI), it is necessary to decide whether the faulty sensors should be excluded or not. A new accommodation rule for double faults is proposed based on the error covariance of triad-solution of redundant inertial sensors, which is related to the navigation accuracy of INS. The proposed accommodation rule provides decision rules to determine which sensors should be excluded among faulty sensors. Monte Carlo simulation is performed for dodecahedron configuration, in which case the proposed accommodation rule can be drawn in the decision space of the two-dimensional Cartesian coordinate system.

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

Robust Analysis for Configuration of Redundant Intertial Sensors

  • Yang, Cheol-Kwan;Kim, Jeong-Yong;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.116.4-116
    • /
    • 2001
  • We consider a robust configuration problem of inertial sensors for inertial navigation system(INS). Fault detection and isolation(FDI) is necessary to improve reliability of the system. For FDI, there used to be more than three mutually orthogonal sensors and thus we have to consider configuration methods of sensors. Various studies in this area have been done, but the former results did not consider effect of uncertainty(misalignment, scale factor error) to determine the configuration of the sensors. In this paper robust configuration of sensors is proposed through sensitivity analysis. Also total least square(TLS) method ...

  • PDF