• Title/Summary/Keyword: Fault Detection Rate

Search Result 96, Processing Time 0.034 seconds

Model-Based Fault Detection and Failsafe Logic Development (지능화 차량의 고장진단 로직 개발)

  • Min, Kyong-Chan;Kim, Jung-Tae;Lee, Gun-Bok;Lee, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.774-779
    • /
    • 2004
  • This paper describes the fault detection and failsafe logic to be used in the Electronic Stability Program (ESP). The Aim of this paper is prevention of erroneous control in the ESP. This paper introduces the fault detection logic and evaluation of residual signals. Failsafe logic consist of four redundant sub-models and they can be used for the detection of faults in each sensor (yaw rate, lateral acceleration, steering wheel angle). We presents two mathematical residual generation method ; one is the method by the average value, and the other is the method by the minimum value of the each residual. We verify a failsafe logic using vehicle test results, also we compare vehicle model based simulation results with test vehicle results.

  • PDF

Analysis of Series Arc-Fault Signals Using Wavelet Transform From Non-linear Loads (웨이블렛 변환을 이용한 비선형 부하 전원선에서의 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun;Jang, Mog-Soon;Choi, Won-HO
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1470-1477
    • /
    • 2008
  • In this paper, a new detection method of series arc-fault signals occurring at the wiring of home appliances is proposed. The discrete wavelet transform was used for the numerical analysis of the variation rate in peak, RMS, noise energy, shoulder of the arc-fault current wave. As a results, the arc distinction threshold value of these variation rates was about 0.1 in most cases. The arc-fault current of the loads with the active PFC circuit showed a high rate of variation in noise energy and shoulder, but arc-fault current of the loads without the active PFC circuit showed a high rate of variation in peak and RMS. The arc fault current in resistive loads showed a high rate of variation in shoulder.

The Comparative Software Cost Model of Considering Logarithmic Fault Detection Rate Based on Failure Observation Time (로그형 관측고장시간에 근거한 결함 발생률을 고려한 소프트웨어 비용 모형에 관한 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.335-342
    • /
    • 2013
  • In this study, reliability software cost model considering logarithmic fault detection rate based on observations from the process of software product testing was studied. Adding new fault probability using the Goel-Okumoto model that is widely used in the field of reliability problems presented. When correcting or modifying the software, finite failure non-homogeneous Poisson process model. For analysis of software cost model considering the time-dependent fault detection rate, the parameters estimation using maximum likelihood estimation of inter-failure time data was made. In this research, Software developers to identify the best time to release some extent be able to help is considered.

Fault Detection of the Cylindrical Plunge Grinding Process by Using the Parameters of AE Signals

  • Kwak, Jae-Seob;Song, Ji-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.7
    • /
    • pp.773-781
    • /
    • 2000
  • The focus of this study is the development of a credible fault detection system of the cylindrical plunge grinding process. The acoustic emission (AE) signals generated during machining were analyzed to determine the relationship between grinding-related faults and characteristics of changes in signals. Furthermore, a neural network, which has excellent ability in pattern classification, was applied to the diagnosis system. The neural network was optimized with a momentum coefficient, a learning rate, and a structure of the hidden layer in the iterative learning process. The success rates of fault detection were verified.

  • PDF

A precise sensor fault detection technique using statistical techniques for wireless body area networks

  • Nair, Smrithy Girijakumari Sreekantan;Balakrishnan, Ramadoss
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • One of the major challenges in wireless body area networks (WBANs) is sensor fault detection. This paper reports a method for the precise identification of faulty sensors, which should help users identify true medical conditions and reduce the rate of false alarms, thereby improving the quality of services offered by WBANs. The proposed sensor fault detection (SFD) algorithm is based on Pearson correlation coefficients and simple statistical methods. The proposed method identifies strongly correlated parameters using Pearson correlation coefficients, and the proposed SFD algorithm detects faulty sensors. We validated the proposed SFD algorithm using two datasets from the Multiparameter Intelligent Monitoring in Intensive Care database and compared the results to those of existing methods. The time complexity of the proposed algorithm was also compared to that of existing methods. The proposed algorithm achieved high detection rates and low false alarm rates with accuracies of 97.23% and 93.99% for Dataset 1 and Dataset 2, respectively.

Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm (특징 추출과 검출 오차 최소화 알고리듬을 이용한 회전기계의 결함 진단)

  • Chong, Ui-pil;Cho, Sang-jin;Lee, Jae-yeal
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.27-33
    • /
    • 2006
  • Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.

An acoustic sensor fault detection method based on root-mean-square crossing-rate analysis for passive sonar systems (수동 소나 시스템을 위한 실효치교차율 분석 기반 음향센서 결함 탐지 기법)

  • Kim, Yong Guk;Park, Jeong Won;Kim, Young Shin;Lee, Sang Hyuck;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.30-38
    • /
    • 2017
  • In this paper, we propose an underwater acoustic sensor fault detection method for passive sonar systems. In general, a passive sonar system displays processed results of array signals obtained from tens of the acoustic sensors as a two-dimensional image such as displays for broadband or narrowband analysis. Since detection result display in the operation software is to display the accumulated result through the array signal processing, it is difficult to determine the possibility where signal may be contaminated by the fault or failure of a single channel sensor. In this paper, accordingly, we propose a detection method based on the analysis of RMSCR (Root Mean Square Crossing-Rate), and the processing techniques for the faulty sensors are analyzed. In order to evaluate the performance of the proposed method, the precision of detecting fault sensors is measured by using signals acquired from real array being operated in several coastal areas. Besides, we compare performance of fault processing techniques. From the experiments, it is shown that the proposed method works well in underwater environments with high average RMS, and mute (set to zero) shows the best performance with regard to fault processing techniques.

A Dissimilarity with Dice-Jaro-Winkler Test Case Prioritization Approach for Model-Based Testing in Software Product Line

  • Sulaiman, R. Aduni;Jawawi, Dayang N.A.;Halim, Shahliza Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.932-951
    • /
    • 2021
  • The effectiveness of testing in Model-based Testing (MBT) for Software Product Line (SPL) can be achieved by considering fault detection in test case. The lack of fault consideration caused test case in test suite to be listed randomly. Test Case Prioritization (TCP) is one of regression techniques that is adaptively capable to detect faults as early as possible by reordering test cases based on fault detection rate. However, there is a lack of studies that measured faults in MBT for SPL. This paper proposes a Test Case Prioritization (TCP) approach based on dissimilarity and string based distance called Last Minimal for Local Maximal Distance (LM-LMD) with Dice-Jaro-Winkler Dissimilarity. LM-LMD with Dice-Jaro-Winkler Dissimilarity adopts Local Maximum Distance as the prioritization algorithm and Dice-Jaro-Winkler similarity measure to evaluate distance among test cases. This work is based on the test case generated from statechart in Software Product Line (SPL) domain context. Our results are promising as LM-LMD with Dice-Jaro-Winkler Dissimilarity outperformed the original Local Maximum Distance, Global Maximum Distance and Enhanced All-yes Configuration algorithm in terms of Average Fault Detection Rate (APFD) and average prioritization time.

An Experimental Study on Multi-Fault Detection and Diagnosis Analysis of HVAC System (HVAC 시스템의 중복고장 검출을 위한 실험적 연구)

  • Cho Sung-Hwan;Hong Young-Ju;Yang Hooncheul;Ahn Byung-Cheon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.932-941
    • /
    • 2004
  • The objective of this study is to detect the multi-fault of HVAC system using a new pattern classification technique. To classify the effect of single-fault in determining the pattern, supply air temperature, OA-damper, supply fan, and air flowrate were chosen as experimental parameters. The combination of supply temperature, flow rate, supply fan and OA-damper were chosen as multi-fault conditions. Three kinds of patterns were introduced in the analysis of multi-fault problem. To solve multi-fault problem, the new pattern classification technique using residual ratio analysis was introduced to detect the multi-fault as well as single-fault. The residual ratio could diagnose single-fault or multi-fault into several patterns.

Fault Detection in Diecasting Process Based on Deep-Learning (다단계 딥러닝 기반 다이캐스팅 공정 불량 검출)

  • Jeongsu Lee;Youngsim, Choi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.369-376
    • /
    • 2022
  • The die-casting process is an important process for various industries, but there are limitations in the profitability and productivity of related companies due to the high defect rate. In order to overcome this, this study has developed die-casting fault detection modules based on industrial AI technologies. The developed module is constructed from three-stage models depending on the characteristics of the dataset. The first-stage model conducts fault detection based on supervised learning from the dataset without labels. The second-stage model realizes one-class classification based on semi-supervised learning, where the dataset only has production success labels. The third-stage model corresponds to fault detection based on supervised learning, where the dataset includes a small amount of production failure cases. The developed fault detection module exhibited outstanding performance with roughly 96% accuracy for actual process data.