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1  |   INTRODUCTION

Wireless body area networks (WBANs) enable continuous 
monitoring through sensors in both medical (remote patient 
monitoring, rehabilitation, assisted living, telemedicine, and 
biofeedback) and non-medical (sports, military, lifestyle, 
and entertainment) applications [1]. In healthcare scenarios, 
WBANs can effectively improve the quality of treatment 
offered through the continuous monitoring of physiological 
parameters instead of requiring routine checkups. Some ex-
amples of physiological parameters are temperature, pulse, 
photoplethysmogram, galvanic skin response, blood pres-
sure, electrocardiogram, electromyogram, heart rate, elec-
troencephalogram, and blood glucose level. SHIMMER 
[2], LOTUS [3], IRIS [4], MicaZ [5], TinyNode [6], Sun 
SPOT [7], Cricket [8], and TelosB [9] are commonly used 
nodes in the medical field. The robustness of the WBAN 

healthcare system heavily relies on the accuracy of sensor 
data. Unexpected failures in hardware, defective sensors, 
and maliciously inserted data can result in inaccurate sensor 
readings. Therefore, sensor fault detection is one of the key 
challenges in healthcare systems. Various techniques have 
been proposed to detect sensor anomalies. Hill and Minsker 
[10] proposed a data-driven model for detecting anomalies 
in environmental sensor data streams. Their approach only 
focuses on the detection of point anomalies and does not 
consider sensor correlation, resulting in a high false alarm 
rate. Liu and others [11] proposed sensor anomaly detection 
based on the Mahalanobis distance technique. Their method 
calculates the Mahalanobis distance between actual and 
forecasted sensor observations. If a calculated Mahalanobis 
distance is above a certain threshold, then anomalous sensor 
values are identified. The major drawback of this method is 
that it assumes neighboring nodes gather the same type of 
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data. Salem and others [12] proposed an anomaly detection 
technique using support vector machines (SVMs) and linear 
regression models in WBANs. However, this method is inef-
ficient in terms of data updating and prediction. Haque and 
others [13] proposed a sensor anomaly detection technique to 
reduce false alarms in healthcare systems.

Their technique uses the sequential minimal optimization 
regression (SMOR) algorithm to predict sensor values based 
on historical data. The predicted values are then compared to 
the observed values for a specific duration, and the estimated 
difference is compared to a threshold to determine whether 
the sensor values are anomalous. The major drawback of this 
method is that equal weights are assigned to all sensors (ie, 
it does not consider correlation among sensors). Saneja and 
Rani [14] proposed an outlier detection technique for big 
sensor data in the healthcare field. However, their method 
has high complexity and limited accuracy. Al Rasyid [15] 
proposed an anomalous data detection method for WBANs 
using Gaussian regression and majority voting. However, 
this method incurs high computational complexity, a large 
number of required training data samples for modeling, and a 
high false alarm rate. Nagdeo and Mahapatro [16] proposed 
an anomaly detection method for WBANs using artificial 
neural networks (ANNs) and linear regression. This method 
has high computational complexity based on the use of a 
back-propagation ANN, as well as a low detection rate and 
high false alarm. Nezhad and Eshghi [17] used a combination 
of decision trees and linear regression to detect anomalies in 
healthcare scenarios. However, their method fails to use a 

sliding window approach, resulting in poor effectiveness for 
detecting anomalies in dynamic systems, such as healthcare 
systems. Boudargham and others [18] presented an anom-
aly detection technique using the modified cumulative sum 
(MCUSUM) method for WBANs. The major drawback of 
this method is a high false alarm rate caused by a lack of con-
sideration for weighted correlations among various sensors.

Table 1 provides a brief summary of various methods de-
scribed above. To overcome the challenges discussed above, 
we propose a sensor fault detection algorithm using simple 
statistical techniques. Our method does not make use of any 
prediction techniques, which significantly reduces its compu-
tational complexity.

The main contributions of this paper can be summarized 
as follows:

1.	 We propose a precise sensor fault detection technique 
using simple statistical techniques in WBANs.

2.	 The proposed scheme uses Pearson correlation to identify 
strongly correlated parameters.

3.	 We validate the proposed work using two datasets, namely 
MIMIC DB dataset 221 (Dataset 1) and MIMIC DB data-
set 276 (Dataset 2), from the MIMIC database [19]. The 
results are compared to those of previous methods.

The remainder of this paper is organized as follows. 
Section  2 presents the proposed sensor fault detection 
method. Section  3 presents performance analysis results. 
Section 4 concludes this paper.

T A B L E  1   Brief summary of various methods

Method Technique Type Remarks

[11] Mahalanobis distance Distance based •	 Infeasible in real-time healthcare scenarios

[12] SVM and linear 
regression

Classification/
regression based

•	 Low accuracy
•	 Infeasible in practical scenarios

[13] SMOR Regression based •	 High false alarm rate caused by the absence of weighted correlations

[14] Dynamic SMOR Regression based •	 High false alarm rate
•	 High computational complexity

[15] Gaussian regression Regression based •	 High computation complexity
•	 Large number of training data samples required for modeling
•	 High false alarm

[16] ANN and linear 
regression

Classification/
regression based

•	 High computational complexity based on the use of a back-propagation ANN
•	 Low detection rate
•	 High false alarm rate

[17] Linear regression and 
J48

Regression based/
decision tree

•	 Fails to use a sliding window mechanism

[18] MCUSUM Statistical based •	 High false alarm rate caused by the absence of weighted correlations

Proposed 
method

Pearson correlation and 
statistical techniques

Statistical based •	 High detection rate
•	 Low false alarm rate
•	 Low computation complexity
•	 Feasible in real-time healthcare scenarios
•	 Considers weighted correlations
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2  |   PROPOSED SENSOR FAULT 
DETECTION METHOD

Figure 1 presents the proposed sensor fault detection method. 
This framework consists of two stages:

1.	 Correlation Estimation.
2.	 Sensor Fault Detection (SFD).

2.1  |  Correlation estimation

The main goal of the correlation estimation stage is to find 
strongly correlated parameters in the given set of parameters 
using Pearson correlation. A Pearson correlation coefficient 
is a value between −1 and 1 that represents the degree to 
which two variables are linearly related.

Correlation values are calculated among different param-
eters and defined in the form of a matrix. For m sensors, an 
m × m matrix is created. The correlation matrix Mc can be 
represented as follows:

where Corr
(
Pi, Pj

)
, {i=1, 2, . . . , m and j=1, 2, . . . , m} is the 

Pearson correlation coefficient between two parameters Pi and 
Pj. This Pearson correlation coefficient can be calculated as 
follows:
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F I G U R E  1   Proposed sensor fault detection method



34  |      GIRIJAKUMARI SREEKANTAN NAIR and BALAKRISHNAN

2.2  |  SFD

The proposed SFD algorithm classifies a sensor Sas as either 
“good condition” or “faulty condition.” It uses statistical mea-
sures such as means and standard deviations to obtain useful in-
formation via simple arithmetic. Means and standard deviations 
can be calculated as follows:

where n is the total number of observations and xi is the ith 
observation.

As inputs, the SFD algorithm takes the numbers of cor-
related sensors for a particular sensor from the correlation 
estimation phase, mean and standard deviation of the normal 
range of each physiological parameter, a threshold, and counter. 
Consider the following scenario. Suppose there are two sensors 
S1 and S2 measuring blood pressure and pulse, respectively. The 
normal ranges of blood pressure and pulse are 90/60 mm Hg to 
120/80 mm Hg and 60 bpm–100 bpm, respectively. Suppose 
the values of S1 and S2 deviate from the normal range. If we 
consider S1 and S2 independently, then both values appear to 
be anomalous. However, when we consider correlations, this 
deviation may represent a real medical condition because when 
blood pressure increases, pulse also increases because these two 
physiological parameters are highly correlated. Otherwise, this 
deviation represents a sensor flaw.

The proposed algorithm operates as follows. We consider 
a consistent sliding window size for all physiological param-
eters. The proposed algorithm first determines how much the 
current window of Sas deviates from the mean of the normal 
range of the physiological parameter associated with Sas (ie, 
�

as
± n

as
. �

as), as shown in steps 2 to 4 in the pseudo-code 
below. The algorithm performs the same steps for all sensors 
correlated to Sas, as shown in steps 6 to 8. Next, the algorithm 

checks for deviations between sensor Sas and sensor Si, as 
shown in step 9. If the condition in step 9 is satisfied, then 
the counter Pos is incremented. In step 14, the counter Pos 
is compared to a threshold TH. The threshold TH can be set 
based on experimental results (eg, average total number of 
correlated sensors for Sas). If the condition is satisfied, then 
the sensor Sas is classified as normal (true medical condition). 
Otherwise, the sensor Sas is classified as faulty.

A good anomaly detection system requires an optimal 
threshold to maximize the true-positive rate (TPR) and mini-
mize the false-positive rate (FPR). There should be a tradeoff 
between TPR and FPR for fixed value of TH. If TH increases, 
then FPR and TPR decrease. In contrast, if TH decreases, 
then FPR and TPR increase. This relationship can be mathe-
matically expressed as

When TH is very low, an anomaly detection system 
may misclassify normal instances, which will result in un-
necessary interventions from healthcare professionals. In 
contrast, if TH is very high, then a system may misclas-
sify anomalous instances, thereby reducing the detection 
rate (ie, real medical conditions may go undetected). In a 
healthcare scenario, detecting real medical conditions is 
extremely important because a patient's life may depend 
on detection.

3  |   EXPERIMENTAL RESULTS 
AND DISCUSSION

The hardware specifications used for our experiments are a 
Core i7-2600 3.40 GHz CPU, Windows 7 Professional (64 bit) 
operating system, and 8 GB of RAM. To validate the proposed 
method, we considered two datasets: MIMIC DB dataset 221 
(Dataset 1) and MIMIC DB dataset 276 (Dataset 2) from the 
MIMIC database. Dataset 1 covers the physiological parame-
ters of respiration, pulse, arterial blood pressure, heart rate, and 
oxygen saturation. Dataset 2 covers the physiological param-
eters of respiration, pulse, arterial blood pressure, heart rate, 
oxygen saturation, central venous pressure, pulmonary artery 
wedge pressure, C.O, Tblood, ST1, ST2, ST3, and pulmonary 
arterial pressure. To evaluate the efficacy of the proposed al-
gorithm, we added anomalous instances to these datasets. For 
our experimentation, we considered a sliding window size 
of 50. We considered two parameters to be highly correlated 
when 0.75 ≤ Corr(Pi, Pj) ≤ 1.

The proposed algorithm was used to determine whether 
a sensor was. For Dataset 1, we considered a total of 12 571 
windows. Among these 12 571 windows, we added anoma-
lous instances to 1571 windows. We injected these anomalies 

(3)Mean (�)=
1

n

n∑
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xi,

(4)Standard deviation (�)=
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n

n∑
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T A B L E  2   Confusion matrix for the proposed method for Dataset 1

Actual condition

Anomaly Benign

Predicted 
condition

Anomaly 1571
(True positive)

348
(False positive)

Benign 0
(False negative)

10 652
(True negative)
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in a random fashion. We had 11  000 benign windows of 
which 10 652 windows were correctly classified and all 1571 
anomalous windows were correctly classified. For Dataset 
2, we considered a total of 23 483 windows. Among these 
23 483 windows, we added anomalous instances to 3483 win-
dows. We injected these anomalies in a random fashion. We 
had 20 000 benign windows of which 18 616 windows were 
classified correctly and 3483 anomalous windows of which 
3456 windows were classified correctly.

The performance of the proposed SFD algorithm was 
evaluated using the following statistical measures. TPR, 

detection rate, and recall refer to the ratio of the number of 
anomalous windows correctly categorized as anomalous over 
the total number of anomalous windows. FPR is the ratio be-
tween the number of benign windows incorrectly categorized 
as anomalous and the total number of benign windows.

The true-negative rate (TNR) is the ratio between the 
number of benign windows correctly categorized as benign 
and the total number of benign windows. The false-neg-
ative rate (FNR) is the ratio between the number of anom-
alous windows incorrectly categorized as benign and the 
total number of anomalous windows. Accuracy is the ratio 
between the number of benign and anomalous windows 
correctly categorized and the total number of windows (ie, 
(TP + TN + FP + FN)). Precision is the ratio between the 
number of anomalous windows correctly categorized and the 
predicted condition anomaly (ie, (TP + FP)). F1 score is a 
statistical measure based on precision and recall.

True positive rate (TPR)∕Recall=
TP

TP+FN
,

False positive rate (FPR)=
FP

TN+FP
,

T A B L E  3   Confusion matrix for the proposed method for Dataset 2

Actual condition

Anomaly Benign

Predicted 
condition

Anomaly 3456
(True positive)

1384
(False positive)

Benign 27
(False negative)

18 616
(True negative)

T A B L E  4   Performance analysis for Dataset 1

Method

Metrics

TPR FPR TNR FNR Accuracy Precision F1 score

[11] 67 36 64 33 64.37 21.00 31.98

[12] 100 20 80 0 82.50 41.66 58.82

[13] 100 5.08 94.92 0 95.55 73.76 84.90

[14] 100 4.28 95.72 0 96.25 76.94 86.97

[15] 100 4.39 95.61 0 96.16 76.49 86.68

[16] 100 4.67 95.33 0 95.91 75.36 85.95

[17] 100 4.5 95.5 0 96.06 76.04 86.39

[18] 99 5.83 94.17 1 94.77 70.80 82.56

Proposed method 100 3.16 96.84 0 97.23 81.87 90.03

T A B L E  5   Performance analysis for Dataset 2

Method

Metrics

TPR FPR TNR FNR Accuracy Precision F1 score

[11] 64 49 51 36 52.93 18.53 28.74

[12] 97 23 77 3 79.97 42.35 58.95

[13] 97 9.13 90.87 3 91.78 64.92 77.78

[14] 99 8.37 91.63 1 92.72 67.32 80.14

[15] 98.19 8.52 91.48 1.81 92.48 66.74 79.47

[16] 98.03 8.76 91.24 1.97 92.25 66.09 78.95

[17] 99 8.67 91.33 1 92.47 66.54 79.59

[18] 95.8 10.17 89.83 4.2 90.72 62.13 75.37

Proposed method 99.22 6.92 93.08 0.78 93.99 71.40 83.05
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Tables  2 and 3 present the confusion matrices for the 
proposed scheme for Dataset 1 and Dataset 2, respectively. 
Tables 4 and 5 present complete evaluations of the proposed 
scheme based on the statistical metrics discussed above for 
Dataset 1 and Dataset 2, respectively. Figure 2 presents the 
performance of the SFD algorithm for Dataset 1 in terms of 
TPR and TNR. One can clearly see that the anomaly detec-
tion rate of the proposed scheme is 100%, which matches the 
results of existing schemes [12–17]. Figure  3 presents the 
performance of the SFD algorithm for Dataset 1 in terms of 
FPR and FNR. The reduction in FPR can be calculated as

where FPRProposedScheme and FPRExistingScheme are the FPR of 
the proposed scheme and an existing scheme, respectively. The 
proposed SFD algorithm significantly reduces FPR by 91.22%, 
84.20%, 37.80%, 26.17%, 28.02%, 32.33%, 29.78%, and 
45.80% compared to the existing schemes from Ref. [11–18], 
respectively. The proposed scheme for Dataset 1 achieves high 
accuracy, precision, and F1 score based on its high detection 

True negative rate (TNR)=
TN

TN+FP
,

False negative rate (FNR)=
FN

TP+FN
,

Accuracy=
TP+TN

TP+TN+FP+FN
,

Precision=
TP

TP+FP
,

F1 score=2×
(

Precision×Recall

Precision+Recall

)
.

FPRReduction =1−

(
FPRProposedScheme

FPRExistingScheme

)
,

F I G U R E  2   Performance analysis of various schemes based on 
TPR and TNR for Dataset 1
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F I G U R E  4   Performance analysis of various schemes based on 
TPR and TNR for Dataset 2
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F I G U R E  5   Performance analysis of various schemes based on 
FPR and FNR for Dataset 2
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F I G U R E  6   Accuracy results for various schemes
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rate and low FPR. In summary, it can be concluded that the 
proposed scheme outperforms existing schemes on Dataset 1.

Figure 4 presents the performance of the SFD algorithm for 
Dataset 2 in terms of TPR and TNR. One can clearly see that 
the anomaly detection rate of the proposed algorithm is 99.22%. 
Figure  5 presents the performance of the SFD algorithm for 
Dataset 2 in terms of FPR and FNR. The anomaly detection 
rates of the existing schemes from Ref. [11–18] are 64%, 97%, 
97%, 99%, 98.19%, 98.03%, 99%, and 95.8%, respectively. 
The proposed SFD algorithm significantly reduces the FPR 

by 85.88%, 69.91%, 24.21%, 17.32%, 18.78%, 21%, 20.18%, 
and 31.96%, respectively, when compared to these schemes. 
The proposed scheme for Dataset 2 achieves high accuracy, 
precision, and F1 score based on a high detection rate and low 
FPR. Therefore, it can be concluded that the proposed scheme 
exhibits better performance compared to the existing schemes 
for Dataset 2. In Figure 6, one can clearly see that the proposed 
scheme achieves higher accuracy than existing schemes.

It should also be noted that the TH value plays a crucial role 
in experiments. It has been observed that when TH is equal to 
Avg(N), TPR reaches its highest value. However, when TH is 
less than Avg(N), TPR remains almost constant, but FPR in-
creases. In contrast, when TH is greater than Avg(N), the de-
tection rate decreases. Therefore, based on experimental results, 
we set TH equal to the average of the total number of correlated 
sensors because this TH value yields optimal results (low FPR 
and high TPR). The performance of the proposed algorithm with 
different thresholds is presented in Figure 7. In Table 6, one can 
see that when TH = Avg(N), the TPR of the proposed method 
reaches 100% with an FPR of 3.16% for Dataset 1. Similarly, for 
Dataset 2, TPR reaches 99.22% with an FPR of 6.92%.

The hardware specifications for computing the run times 
of various schemes are the same as those described above. 
We utilized the Python programming environment and 

F I G U R E  7   Performance analysis of the proposed method based on different thresholds for Dataset 1 and Dataset 2
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Datasets Metrics

Threshold (TH)

N/8 N/4 Avg (N) 3N/4 N

Dataset 1 TPR 98.95 99.89 100.00 100.00 100.00

FPR 1.53 2.57 3.16 4.95 6.57

Dataset 2 TPR 98.02 98.95 99.22 99.22 99.22

FPR 2.16 4.07 6.92 7.18 8.21

F I G U R E  8   Run times of various schemes for Dataset 1 and 
Dataset 2
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datasets 1 and 2 with numbers of windows of 12  571 and 
23 483, respectively. The sliding window size was set to 50, 
and the threshold TH was set to Avg(N). Figure 8 presents 
the run times of various schemes for Dataset 1 and Dataset 2. 
One can see that the proposed method outperforms existing 
methods on both datasets 1 and 2 when TH is set to Avg(N).

3.1  |  Theoretical analysis

This section presents theoretical analysis of the proposed 
SFD algorithm. In general, the time complexity of any given 
algorithm primarily depends on the time required to execute 
each instruction and the number of times each instruction is 
executed. In the proposed algorithm, suppose the ith instruc-
tion consumes Ci time per execution and executes Ti times. 
Then, the total cost of the ith instruction is CiTi, where Ci is 
a constant. One can clearly see that steps 2 to 4 and 14 to 17 
are executed only once. Therefore, the total cost for steps 2 
to 4 and 14 to 17 is

The total cost for instructions in the loop can be computed 
as follows:

Step 5 will be executed N + 1 times, meaning the total 
cost for step 5 is C5(N + 1). The inner loop in steps 6 to 9 
will be executed N times. Therefore, the total cost for steps 
6 to 9 is

Calculating the cost of step 10 is somewhat more difficult. 
For step 10, T10 varies between 0 and N. In general, the total 
cost for step 10 is C10T10. Therefore, we consider the follow-
ing three cases:

Case 1: When T10 = 0

Total cost of step 10 is C10×0=0.
Case 2: When 0<T10 ≤N∕2

�If T10 is at the higher bound (ie, T10 =N∕2), then the total 
cost of step 10 is C10×N∕2.
Case 3: When N∕2<T10 ≤N

�If T10 is at the higher bound (ie, T10 =N), then the total 
cost of step 10 is C10×N.
Therefore, the total cost of the SFD algorithm is

Equation (5) can be rewritten as

For Case 1, (6) will become

For Case 2, (6) will become

For Case 3, (1) will become

Based on (7), (8), and (9), one can clearly see that the 
growth of the function is linear (ie, a+b), where a and b are 
constants. Therefore, based on this analysis, it can be con-
cluded that for all cases, the computational complexity of the 
SFD algorithm is O (N) . Table  7 presents comparisons be-
tween the SFD and existing schemes based on computational 
complexity.

4  |   CONCLUSION

This paper proposed an SFD algorithm for identifying faulty 
sensors precisely in healthcare applications. The proposed 
system makes use of Pearson correlation coefficients to iden-
tify strongly correlated sensors and applies simple statisti-
cal techniques to classify a sensor as faulty or normal. Our 
system was validated using two datasets from the MIMIC 
database. Experimental results revealed high detection rates 
(TPRs) of 100% and 99.22% for Dataset 1 and Dataset 2, 
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T A B L E  7   Time complexities of various schemes

Method Time complexity

[11] O

(
m

3
)

[12] O

(
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3
)
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(
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3
)
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Nn

3
)

[15] O

(
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3
)

[16] O

(
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5
)

[17] O (nmlogn)

[18] O (m)

Proposed method O (N)

Note: m: number of physiological parameters; N: number of correlated 
physiological parameters; n: number of records in the training phase.
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respectively. Our method also reduced the FPR by 26.17% 
and 17.32% compared to the method in [14] for Dataset 1 and 
Dataset 2, respectively. The proposed method achieved ac-
curacy rates of 97.23% and 93.99% for Dataset 1 and Dataset 
2, respectively. Another advantage is that our method does 
not make use of any prediction techniques, which reduces 
the complexity of the proposed system. Experimental results 
clearly highlighted the improved efficiency and accuracy of 
the proposed method. Additionally, the time complexity of 
the SFD algorithm is O (N).
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