• Title/Summary/Keyword: Fatty acid metabolism

Search Result 573, Processing Time 0.024 seconds

Nutritional and Biochemical Studies on the Pollen toads -1. Studies on Lipid Compositions of Sunflower Pollen toad and Effects of Its Pollen toad on Liver Cholesterol Metabolism in Mouse- (화분립(花粉粒)의 영양생화학적(營養生化學的) 연구(硏究) -1. 해바라기 화분립(花粉粒)의 지질조성(脂質組成)과 Mouse 간장(肝臟) 콜레스테롤 대사(代謝)에 미치는 영향(影響)-)

  • Chung, Yung-Gun;Yoon, Soo-Hong;Kwon, Jung-Sook;Bae, Man-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 1984
  • For the purpose of investigating whether the administration of sunflower pollen load has any influence upon liver cholesterol metabolism in mouse, lipids were isolated from sunflower pollen load, identified and quantitated by thin-layer and gas liquid chromatographies. We also studied changes in liver cholesterol level in mouse according to the amount and the period of pollen load administration. Lipids of sunflower pollen load were constituted 84.10f of neutral lipid, 10.50% of glycolipid and 5.40% of phospholipid. The main fatty acid contents of neutral lipid, glycolipid and phospholipid were ranged 28.48 to 33.70% of linoleic acid, 12.90 to 47.50% of palmitic acid ana 11.20 to 12.20% of oleic acid, however, phospholipid contained more palmitic acid than the other lipids. The body weight of the Pollen fed mouse significantly increased during experimental Period in comparison with control group. From the fact tat the ratio of liver weight to body weight of pollen fed mouse was smaller than that of control group, it was proved that liver lipid metabolism of pollen fed mouse was more active than that of control group. During early experimental period, liver cholesterol level had been increased according to pollen load administration(P.O), and then the level decreased rapidly to the similar level to that of control group at the end of the period.

  • PDF

Insulin-like Growth Factor-I Induces FATP1 Expression in C2C12 Myotubes (C2C12 myotube에서 Insulin-like growth factor-I 이 FATP1 발현에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1284-1290
    • /
    • 2014
  • Fatty acid transporter protein 1 (FATP1) is highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism. However, the influence of insulin-like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on FATP1 in skeletal muscle cells has not been demonstrated. To investigate the effect of IGF-I on FATP1 and the expression of the IGFBP5 protein, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I at different time points. The results showed that IGF-I increased FATP1 and IGFBP5 protein expression in a time-dependent manner. To determine whether this induction of FATP1 by the IGF-I treatment was regulated pretranslationally, the mRNA level of FATP1 was measured by real-time quantitative PCR. The IGF-I treatment resulted in very rapid induction of the FATP1 mRNA transcript in C2C12 myotubes. FATP1 mRNA increased 169% and 132% after 24 and 48 h of the IGF-I treatment, respectively, and it returned to control levels after 72 h of the treatment, suggesting that the FATP1 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. This is the first evidence that IGF-I can regulate the expression of FATP1. In conclusion, IGF-I induced rapid transcriptional modification of the FATP1 gene in C2C12 skeletal muscle cells and had modulating effects on fatty acid uptake proteins and oxidative proteins.

Protective Effect of Rubus crataegifolius Extracts Against Obesity and Non-alcoholic Fatty Liver Disease via Promotion of AMPK/ACC/CPT-1 Pathway in HFD-induced C57BL/6J Obese Mice (HFD 유도 C57BL/6J 비만 mice에서 AMPK/ACC/CPT-1 경로 촉진을 통한 산딸기 추출물의 비만 및 비알코올성 지방간 질환에 대한 보호 효과)

  • Young Ik Lee;Hui Jin Lee;Su Jin Pyo;Yong Hyun Park;Myng Min Lee;Ho-Yong Sohn;Jin Sook Cho
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.967-977
    • /
    • 2023
  • Rubus crataegifolius (RC) is a traditional Asian medicinal plant belonging to the Rosaceae family. The fruits of RC are known to prevent adult diseases through antioxidants. In this study, the effects of RC extract (RCex) on obesity and nonalcoholic fatty liver disease (NAFLD) were evaluated in animal models. Twenty-eight male C57BL/6J mice were induced to become obese for 8 weeks and then the extract was orally administered for 8 weeks. RCex reduced body weight, adipose tissue, liver weight. RCex improved biochemical biomarkers including lipid metabolism (alanine aminotransferase (ALT), aspartate aminotransferase (AST), plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol). The activation of AMP-activated protein kinase (AMPK) reduced the expression of adipogenesis genes (liver × receptor (LXR), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthesis (FAS), acetyl-CoA carboxylase 1 (ACC1) and the effect of enhancing carnitine palmitoyltransferase (CPT) activity by RCex was verified. RCex also influence on plasma production of hormones (adiponectin & leptin) related on energy expenditure and metabolism. In addition, we confirmed that RCex improved glucose intolerance in HFD-induced obese rats. RCex was first demonstrated to have anti-obesity as well as anti-NAFLD effects by regulating fatty acid oxidation and fatty acid synthesis by phosphorylation of AMPK. This suggests that RCex could be a good supplement for the prevention of obesity and related NAFLD.

Diversity of Leuconostocs on Garlic Surface, an Extreme Environment

  • KIM, MYUNG HEE;SUN TAEK SHIM;YOUN SOON KIM;KYU HANG KYUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.497-502
    • /
    • 2002
  • Thirty-nine strains of Leuconostocs found to be tolerant to $10\%$ or more garlic were selected for further identification, by comparing their whole-cell protein pattern, 16S rRNA gene (first 530 bases) sequence, cellular fatty acid composition, and carbon source metabolism. Two isolates were Identified as Leuconostoc mesenteroides and 32 others as Leuconostoc citreum. Five other strains belonging to a cluster could not be allocated to the existing species. 16S rRNA gene sequence and cellular fatty acid composition of the unidentified bacteria exhibited close similarity with Leuconostoc argentinum. The unidentified isolates were not allocated to L. argentinum, because they formed polysaccharide from sucrose, while L. argentinum strains do not. Leuconostocs tolerant to high concentration of garlic were found predominantly on garlic surface, an extreme environment which is unfit for most of other microorganisms.

Effect of High-tyrosine Diet on Brain Norepinephrine Metabolism in Immobilization-Stressed Rats

  • Yoon Hae Seong
    • Journal of Nutrition and Health
    • /
    • v.26 no.7
    • /
    • pp.858-866
    • /
    • 1993
  • S.D.rats were fed with 3.4% tyrosine supplemented diet for 5 days. Tyrosine diet had no effects on brain NE and MHPG-SO4 levels in non-stressed rats. When these animals were given 3 hr-immobilization stress, they responded in a manner that coped better to the stress. This was measured by the increase in brain MHPG-SO4 indicating the increase in norepinephrine turnover by the stressed animals. When rats were stressed, fed basal or high-tyrosine diet, brain tyrosine concentration dropped more than 26% over the non-stress control animals. 3-hr immobilization stress also decreased brain NE levels. However, while the stress resulted in a significant decrease(p<0.05) of brain NE in basal diet, the decrease was not significant in high-TYR diet group. And as the stress index, serum corticosterone, glucose, and free fatty acid concentratons also were assayed. In this study, it was found that high-TYR diet prevented the stress-induced depletion of brain NE and suppressed the rise in serum corticosterone, glucose, and free fatty acid. These results suggest that high-TYR diet increases the coping ability of body to stress.

  • PDF

The Effects of Scutellaria Radix Extract on the Alcohol-Induced Fatty Acid Synthesis of Liver in Rats (알코올로 유도된 흰쥐의 간 지방 형성에 황금 추출물이 미치는 효과)

  • Kim, Bum Hoi
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • Objectives: Alcoholic fatty liver is a potentially pathologic condition which can progress to steatohepatitis, fibrosis, and cirrhosis. The objective of this study is to investigate the effects of Scutellaria Radix (SR) extract on the alcoholic fatty liver induced by long-term EtOH administration. Results: Male Sprague Dawley rats were used in this study. All animals were randomly divided into Normal group, treated with saline (n=10); EtOH group, treated with ethanol (n=10); EtOH+SR group, treated with ethanol+Scutellaria Radix extract (n=10). For oral administration of ethanol in EtOH and EtOH+SR group, the ethanol was dissolved in distilled water in concentrations of 25% (v/v). Throughout the experiment of 8 week, the rats were allowed free access to water and standard chow. Sample group were administrated by Scutellaria Radix extract daily for 8 weeks. Results: The levels of hepatic marker such as aspartate aminotransferase and alanine aminotransferase were altered. Histopathological changes such as ballooning, fatty and hydropic degeneration were reduced and the expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) was significantly attenuated by Scutellaria Radix extract. Conclusions: These data suggest that Scutellaria Radix extract attenuated the alcoholic simple fatty liver by improving hepatic lipid metabolism via suppression of $TNF-{\alpha}$ protein. Scutellaria Radix could be effective in protecting the liver from alcoholic fatty liver.

1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

  • Xu, Chuang;Sun, Ling-wei;Xia, Cheng;Zhang, Hong-you;Zheng, Jia-san;Wang, Jun-song
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.219-229
    • /
    • 2016
  • Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using $^1H$ nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in ${\beta}$-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, ${\gamma}$-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows.

The effect of Antiseptics on the Galactolipid Metabolism of Chlorella ellipsoidea Chloroplast and Thylakoid Envelope (Chlorella ellipsoidea 엽록체막과 틸라코이드막의당지질 대사에 미치는 식품보존제의 효과)

  • 최은아;장재선;이종삼
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.221-231
    • /
    • 1998
  • The biosynthesis of galactolipid and the composition of fatty acid in chloroplast and thylakoid envelope isolated from C. ellipsoidea treated with antiseptics (potassium sorbate: PS, sodium benzoate:SB, calcium propionate:CP) were analyzed. The contents of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and total lipid in treatment with antiseptics were lower to compared with the control. The major fatty acid utilized for biosynthesis of MGDG in chloroplast envelope were palmitoleic acid (ave. 15.55%), oleic acid (ave. 15.09%) in control. Otherwise, the major fatty acids in P.S treatment were utilized for oleic acid (ave. 13.71%), linolenic acid (ave. 14.36%), palmitoleic acid (ave. 18.26%), oleic acid (ave. 17.26%) in S.B treatment, and oleic acid (ave. 16.88%), palmitoleic acid (ave. 16.31%) in CP treatment. It was showed that the major fatty acids in chloroplast envelope DGDG were oleic acid (ave. 15.75%), linolenic acid (ave. 17.74%) in control, oleic acid (ave. 14.90%), palmitoleic acid (ave. 15.97%) in P.S treatment, palmitoleic acid (ave. 13.29%), oleic acid (ave. 15.74%) in S.B treatment, and oleic acid (ave. 14.52%), palmitoleic acid (ave. 14.03%) in C.P treatment. The major fatty acid utilized for biosynthesis of MGDG in thylakoid envelope were linolenic acid (ave. 14.78%), oleic acid (ave. 12.90%) in control. Otherwise, the major fatty acids were utilized for palmitoleic acid (ave. 13.00%), palmitic acid (ave. 13.00%) in P.S treatment, palmitoleic acid (ave. 12.94%), oleic acid (ave. 12.43%) in S.B treatment, and oleic acid (ave. 12.43%), palmitoleic acid (ave. 12.43%) in C.P treatment. It was showed that the major fatty acids in thylakoid envelope DGDG were linolenic acid (ave. 18.01 %), oleic acid (ave. 15.53%) in control, linolenic acid (ave. 19.20%), linoleic acid (ave. 14.14%) in P.S treatment, palmitoleic acid (ave. 9.03%), oleic acid (ave. 14.85%) in S.B treatment, oleic acid (ave. 13.90%), linolneic acid(ave. 12.66%) in C.P treatment.

  • PDF

Effect of conjugated linoleic acid in diacylglycerol-rich oil on the lipid metabolism of C57BL/6J mice fed a high-fat high-cholesterol diet

  • Lee, Jeung Hee;Cho, Kyung-Hyun;Lee, Ki-Teak
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.1
    • /
    • pp.47-58
    • /
    • 2014
  • The effect of conjugated linoleic acid (CLA) isomers esterified in diacylglycerol (DAG)-rich oil on lipid metabolism was investigated. Since dietary DAG has been known to induce the regression of atherosclerosis, CLA-DAG and olive-DAG oils containing similar levels of DAG (51.4~54.2%) were synthesized from olive oil. Hyperlipidemic C57BL/6J mice were then fed high-fat high-cholesterol diets supplemented with these oils (5% each) for 7 wk. The CLA-DAG diet containing 2.1% CLA isomers (0.78% c9,t11-CLA; 1.18% t10,c12-CLA) remarkably increased the levels of total plasma cholesterol and glutamic oxaloacetic transaminase (GOT) along with hepatic cholesterol and triacylglycerol (TAG) contents. Furthermore, the CLA-DAG diet inhibited fat uptake into adipose tissue whereas fat deposition (especially in the liver) was increased, resulting in the development of fatty livers. Hepatic fatty acid composition in the CLA-DAG mice was different from that of the olive-DAG mice, showing higher ratios of C16:1/C16:0 and C18:1/C18:0 in the liver. The activity of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) was higher in CLA-DAG mice while plasma lecithin:cholesterol acyltransferase (LCAT) activity and the ferric reducing ability of plasma (FRAP) were lower in CLA-DAG mice compared to the olive-DAG animals. Results of the present study suggest that CLA incorporation into DAG oil could induce atherosclerosis in mice.

The effects of plant extracts on lipid metabolism of chickens - A review

  • Xuedong Ding;Ilias Giannenas;Ioannis Skoufos;Jing Wang;Weiyun Zhu
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.679-691
    • /
    • 2023
  • The fat deposition is an important factor affecting chicken meat quality, which is closely related to lipid metabolism of chickens. Therefore, it is important to regulate the lipid metabolism of chickens to improve the chicken meat quality. Plant extracts have special regulatory effects on animal's growth and health and have been widely used in chicken breeding. Some plant extracts have been reported to have functions of changing the fatty acid composition, reducing abdominal fat percentage, and enhancing the intramuscular fat content of chickens by improving the antioxidant capacity, regulating the expression of genes, enzymes, and signaling pathways related to lipid metabolism, modulating intestinal microbiota, affecting hormones level, and regulating DNA methylation. This paper reviewed the application and mechanism of plant extracts on regulating lipid metabolism of chickens to provide a reference for the further application of plant extracts in chicken breeding.