• Title/Summary/Keyword: Fatty acid metabolism

Search Result 563, Processing Time 0.029 seconds

1D Proton NMR Spectroscopic Determination of Ethanol and Ethyl Glucuronide in Human Urine

  • Kim, Siwon;Lee, Minji;Yoon, Dahye;Lee, Dong-Kye;Choi, Hye-Jin;Kim, Suhkmann
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2413-2418
    • /
    • 2013
  • Forensic and legal medicine require reliable data to indicate excessive alcohol consumption. Ethanol is oxidatively metabolized to acetate by alcohol dehydrogenase and non-oxidatively metabolized to ethyl glucuronide (EtG), ethyl sulfate (EtS), phosphatidylethanol, or fatty acid ethyl esters (FAEE). Oxidative metabolism is too rapid to provide biomarkers for the detection of ethanol ingestion. However, the non-oxidative metabolite EtG is a useful biomarker because it is stable, non-volatile, water soluble, highly sensitive, and is detected in body fluid, hair, and tissues. EtG analysis methods such as mass spectroscopy, chromatography, or enzyme-linked immunosorbent assay techniques are currently in use. We suggest that nuclear magnetic resonance (NMR) spectroscopy could be used to monitor ethanol intake. As with current conventional methods, NMR spectroscopy doesn't require complicated pretreatments or sample separation. This method has the advantages of short acquisition time, simple sample preparation, reproducibility, and accuracy. In addition, all proton-containing compounds can be detected. In this study, we performed $^1H$ NMR analyses of urine to monitor the ethanol and EtG. Urinary samples were collected over time from 5 male volunteers. We confirmed that ethanol and EtG signals could be detected with NMR spectroscopy. Ethanol signals increased immediately upon alcohol intake, but decreased sharply over time. In contrast, EtG signal increased and reached a maximum about 9 h later, after which the EtG signal decreased gradually and remained detectable after 20-25 h. Based on these results, we suggest that $^1H$ NMR spectroscopy may be used to identify ethanol non-oxidative metabolites without the need for sample pretreatment.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.

Effects of Caloric Restriction on Endocrine Functions and Body Fat Distribution in Overweight Premenopausal Women, Related to their UCP3 (Uncoupling Protein 3) Genotypes

  • Lee, Jong-Ho;Kim, Oh-Yoen;Kim, Ji-Young;Park, Kyoung;Yangsoo Jang
    • Nutritional Sciences
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • A mutation in the promoter region of uncoupling protein 3 (UCF3), specifically the -55C longrightarrow T transition, may influence an individual's energy metabolism and body weight. The objective of this study was to investigate the effect of a weight reduction program on endocrine functions and body fat distribution, related to UCP3 promoter genotype. Ninety overweight pre-menopausal female subjects participated in the weight reduction program at Yonsei University Hospital, and were placed on a calorie-restricted diet (300 kcal less than their daily requirements) for 12 weeks. After 12 weeks, all subjects on the program lost approximately 5% of their initial body weights and had lower Body Mass Index (BMI) values. Among the 90 women, 56 had a normal (without mutation) UCP3 genotype, while 34 women had mutations in the promoter region of UCP3. Despite similar weight reductions in both groups, a significantly higher decrease in abdominal adipose tissue was observed in the normal UCP3 genotype group, compared to the group with mutations. In particular, there was a significant reduction of fat at the lumbar 1 (Ll) level in the without-mutation group. Serum levels of total cholesterol, apolipoprotein Al were significantly decreased in the without-mutation group, by 4.4% and 5.7% respectively. Serum levels of hormones were not significantly changed in both groups artier the intervention. However, in the group without the mutations, the leptin level significantly reduced by 23.4% (p<0.001). Serum free fatty acid (FFA) concentration was significantly increased in the group with mutation following the weight reduction program. On the other hand, FFA responses were shown similar increases in both groups. In conclusion, although no difference was found in the magnitude of weight reduction in both groups, there were significant differences in body fat distribution and in endocrine function between the groups.

Anti-obesity effects of hot water extract from Wasabi (Wasabia japonica Matsum.) leaves in mice fed high-fat diets

  • Yamasaki, Masayuki;Ogawa, Tetsuro;Wang, Li;Katsube, Takuya;Yamasaki, Yukikazu;Sun, Xufeng;Shiwaku, Kuninori
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.267-272
    • /
    • 2013
  • The anti-obesity effects of a hot water extract from wasabi (Wasabia japonica Matsum.) leaves (WLE), without its specific pungent constituents, such as allyl-isothiocyanate, were investigated in high fat-diet induced mice. C57J/BL mice were fed a high-fat diet (control group) or a high-fat diet supplemented with 5% WLE (WLE group). Physical parameters and blood profiles were determined. Gene expression associated with lipid metabolism in liver and white adipose tissue were analyzed. After 120 days of feeding, significantly lower body weight gain, liver weight and epididymal white adipose tissue weight was observed in the WLE group compared to the control group. In liver gene expression within the WLE group, PPAR${\alpha}$ was significantly enhanced and SREBP-1c was significantly suppressed. Subsequent downstream genes controlled by these regulators were significantly suppressed. In epididymal white adipose tissue of the WLE group, expression of leptin, PPAR${\gamma}$, and C/EBP${\alpha}$ were significantly suppressed and adiponectin was significantly enhanced. Acox, related to fatty acid oxidization in adipocytes, was also enhanced. Our results demonstrate that the WLE dietary supplement induces mild suppression of obesity in a high-fat diet induced mice, possibly due to suppression of lipid accumulation in liver and white adipose tissue.

Production of Bio-Based Isoprene by the Mevalonate Pathway Cassette in Ralstonia eutropha

  • Lee, Hyeok-Won;Park, Jung-Ho;Lee, Hee-Seok;Choi, Wonho;Seo, Sung-Hwa;Anggraini, Irika Devi;Choi, Eui-Sung;Lee, Hong-Weon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1656-1664
    • /
    • 2019
  • Isoprene has the potential to replace some petroleum-based chemicals and can be produced through biological systems using renewable carbon sources. Ralstonia eutropha can produce value-added compounds, including intracellular polyhydroxyalkanoate (PHA) through fatty acid and lipid metabolism. In the present study, we engineered strains of R. eutropha H16 and examined the strains for isoprene production. We optimized codons of all the genes involved in isoprene synthesis by the mevalonate pathway and manipulated the promoter regions using pLac and pJ5 elements. Our results showed that isoprene productivity was higher using the J5 promoter ($1.9{\pm}0.24{\mu}g/l$) than when using the lac promoter ($1.5{\pm}0.2{\mu}g/l$). Additionally, the use of three J5 promoters was more efficient ($3.8{\pm}0.18{\mu}g/l$) for isoprene production than a one-promoter system, and could be scaled up to a 5-L batch-cultivation from a T-flask culture. Although the isoprene yield obtained in our study was insufficient to meet industrial demands, our study, for the first time, shows that R. eutropha can be modified for efficient isoprene production and lays the foundation for further optimization of the fermentation process.

Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen

  • Kim, Byeollee;Han, So-Ra;Lamichhane, Janardan;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1144-1154
    • /
    • 2019
  • There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.

Effects of isorhamnetin on the regulation of mitochondrial function in C2C12 muscle cells (Isorhamnetin의 근육세포 미토콘드리아 기능조절에 미치는 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.54 no.4
    • /
    • pp.335-341
    • /
    • 2021
  • Purpose: Muscle mitochondria play a key role in regulating fatty acid and glucose metabolism. Dysfunction of muscle mitochondria is associated with metabolic diseases such as obesity and type 2 diabetes. Isorhamnetin (ISOR), also known as 3-O-methylquercetin, a quercetin metabolite, is a naturally occurring flavonoid in many plants. This study evaluated the effects of ISOR on the regulation of the mitochondrial function of C2C12 muscle cells. Methods: C2C12 muscle cells were differentiated for 5 days, and then treated in various concentrations of ISOR. Cytotoxicity was determined by assessing cell viability using the water-soluble tetrazolium salt-8 assay principle at different concentrations of ISOR and time points. Levels of the mitochondrial DNA (mtDNA) content and gene expression were measured by quantitative real-time polymerase chain reaction. The citrate synthase (CS) activity was quantified by the enzymatic method. Results: ISOR at a concentration of 10 µM did not show any cytotoxic effects. ISOR increased the mtDNA copy number in a time- or dose-dependent manner. The messenger RNA levels of genes involved in mitochondrial function, such as peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein 3 were significantly stimulated by the ISOR treatment. The CS activity was also significantly increased in a time- or dose-dependent manner. Conclusion: These results suggest that ISOR enhances the regulation of mitochondrial function, which was at least partially mediated via the stimulation of the mtDNA replication, mitochondrial gene expression, and CS activity in C2C12 muscle cells. Therefore, ISOR may be useful as a potential food ingredient to prevent metabolic diseases-associated muscle mitochondrial dysfunction.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

The protective effects of Aster yomena (Kitam.) Honda on high-fat diet-induced obese C57BL/6J mice

  • Kim, Min Jeong;Kim, Ji Hyun;Lee, Sanghyun;Kim, Bohkyung;Kim, Hyun Young
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Aster yomena (Kitam.) Honda (AY) has remarkable bioactivities, such as antioxidant, anti-inflammation, and anti-cancer activities. On the other hand, the effects of AY against obesity-induced insulin resistance have not been reported. Therefore, this study examined the potential of AY against obesity-associated insulin resistance in high-fat diet (HFD)-fed mice. MATERIALS/METHODS: An obesity model was established by feeding C57BL/6J mice a 60% HFD for 16 weeks. The C57BL6/When ethyl acetate fraction from AY (EFAY) at doses of 100 and 200 mg/kg/day was administered orally to mice fed a HFD for the last 4 weeks. Normal and control groups were administered water orally. The body weight and fasting blood glucose were measured every week. Dietary intake was measured every other day. After dissection, blood and tissues were collected from the mice. RESULTS: The administration of EFAY reduced body and organ weights significantly compared to HFD-fed control mice. The EFAY-administered groups also improved the serum lipid profile by decreasing the triglyceride, total cholesterol, and low-density lipoprotein compared to the control group. In addition, EFAY ameliorated the insulin resistance-related metabolic dysfunctions, including the fasting blood glucose and serum insulin level, compared to the HFD-fed control mice. The EFAY inhibited lipid synthesis and insulin resistance by down-regulation of hepatic fatty acid synthase and up-regulation of the AMP-activated protein kinase pathway. EFAY also reduced lipid peroxidation in the liver, indicating that EFAY protected hepatic injury induced by obesity. CONCLUSIONS: These results suggest that EFAY improved obesity-associated insulin resistance by regulating the lipid and glucose metabolism, suggesting that AY could be used as a functional food to prevent obesity and insulin resistance.

Combined transcriptome and proteome analyses reveal differences in the longissimus dorsi muscle between Kazakh cattle and Xinjiang brown cattle

  • Yan, XiangMin;Wang, Jia;Li, Hongbo;Gao, Liang;Geng, Juan;Ma, Zhen;Liu, Jianming;Zhang, Jinshan;Xie, Penggui;Chen, Lei
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1439-1450
    • /
    • 2021
  • Objective: With the rapid development of proteomics sequencing and RNA sequencing technology, multi-omics analysis has become a current research hotspot. Our previous study indicated that Xinjiang brown cattle have better meat quality than Kazakh cattle. In this study, Xinjiang brown cattle and Kazakh cattle were used as the research objects. Methods: Proteome sequencing and RNA sequencing technology were used to analyze the proteome and transcriptome of the longissimus dorsi muscle of the two breeds of adult steers (n = 3). Results: In this project, 22,677 transcripts and 1,874 proteins were identified through quantitative analysis of the transcriptome and proteome. By comparing the identified transcriptome and proteome, we found that 1,737 genes were identified at both the transcriptome and proteome levels. The results of the study revealed 12 differentially expressed genes and proteins: troponin I1, crystallin alpha B, cysteine, and glycine rich protein 3, phosphotriesterase-related, myosin-binding protein H, glutathione s-transferase mu 3, myosin light chain 3, nidogen 2, dihydropyrimidinase like 2, glutamate-oxaloacetic transaminase 1, receptor accessory protein 5, and aspartoacylase. We performed functional enrichment of these differentially expressed genes and proteins. The Kyoto encyclopedia of genes and genomes results showed that these differentially expressed genes and proteins are enriched in the fatty acid degradation and histidine metabolism signaling pathways. We performed parallel reaction monitoring (PRM) verification of the differentially expressed proteins, and the PRM results were consistent with the sequencing results. Conclusion: Our study provided and identified the differentially expressed genes and proteins. In addition, identifying functional genes and proteins with important breeding value will provide genetic resources and technical support for the breeding and industrialization of new genetically modified beef cattle breeds.